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Abstract

Household robots can elevate the quality of life by automating routine
tasks, particularly finding user-specified items within the home. This
capability is essential for robots performing tasks such as tidying up,
cooking, or assisting individuals with limited mobility. This thesis

addresses the challenging task of finding user-specified objects in indoor envi-
ronments. In this task, a robot must locate a target object based on a natural
language description provided by the user in an initially unknown environment.
This task presents two main challenges. First, it requires reliable detection across
a wide range of items a user may request, creating a perception challenge. Second,
the robot must locate these items within cluttered, varied room layouts, adding
an exploration challenge.

Recent research suggests that semantically guided, goal-directed exploration
can improve the efficiency of locating a target object by guiding the robot toward
target-relevant areas. State-of-the-art methods for this problem leverage vision-
language models (VLMs) to provide semantic guidance by comparing observed
images of regions with the linguistic description of the target object, thereby
estimating semantic similarity. However, these approaches often overlook the
inherent ambiguity in natural language descriptions, which introduces uncertainty
into VLM-based predictions. Failing to incorporate this uncertainty can lead
to overconfidence, misdirected exploration, and reduced success in locating the
target object. Additionally, VLM-guided exploration approaches often employ
myopic strategies, focusing on exploring the most semantically similar region at
each step without explicitly accounting for future observations. While effective
in many cases, this approach may still have limitations in complex environments.

We present a novel semantic uncertainty-informed active perception frame-
work to address these challenges. Our framework integrates perception, mapping,
and planning for effective object search in household environments. We leverage
VLMs for perception, enabling the robot to understand and identify arbitrary ob-
jects in the environment based on natural language descriptions. Recognizing the
inherent uncertainty in VLM-based perception due to linguistic ambiguities, we
present a method to quantify this uncertainty by generating a range of linguistic
descriptions that convey the same semantic context but capture diverse interpre-
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tations. Using this uncertainty, we construct a probabilistic metric-semantic map
that guides exploration based on the estimated semantic similarity of the target
object to the various regions in the environment.

Our contributions are threefold. First, we propose a method to quantify the
uncertainty in semantic similarity derived from VLM-based perception. Second,
we develop a probabilistic map that captures uncertainty in semantic similarity.
Third, to evaluate the effectiveness of our framework in finding objects, we de-
velop both myopic and non-myopic planners that utilize this map for exploration.
Including both approaches allows us to assess how each strategy performs under
uncertainty, particularly in complex environments where exploration demands
a balance of immediate and future-oriented decisions. Our planners employ an
information-theoretic reward function to balance exploiting regions with high ex-
pectation of semantic similarity with exploration of regions with high uncertainty.
Experimental evaluations demonstrate that our approach achieves comparable or
marginally lower success rates than state-of-the-art approaches on this task while
performing uncertainty-informed exploration. Finally, we open-source our code
for usage by the community.
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Zusammenfassung

Haushaltsroboter können die Lebensqualität erhöhen, indem sie
Routineaufgaben automatisieren, insbesondere das Auffinden von be-
nutzerdefinierten Gegenständen im Haushalt. Diese Fähigkeit ist
wichtig für Roboter, die Aufgaben wie Aufräumen, Kochen oder die

Unterstützung von Personen mit eingeschränkter Mobilität übernehmen. Diese
Arbeit befasst sich mit der anspruchsvollen Aufgabe, benutzerdefinierte Objekte
in Innenräumen zu finden. Bei dieser Aufgabe muss ein Roboter ein Zielobjekt
auf der Grundlage einer vom Benutzer in natürlicher Sprache gegebenen Beschrei-
bung in einer zunächst unbekannten Umgebung finden. Diese Aufgabe stellt zwei
große Herausforderungen dar. Erstens erfordert sie eine zuverlässige Erkennung
einer Vielzahl von Objekten, die ein Benutzer anfordern kann, was eine Her-
ausforderung für die Wahrnehmung darstellt. Zweitens muss der Roboter diese
Gegenstände in einem unübersichtlichen, vielfältigen Raumlayout finden, was eine
zusätzliche Herausforderung für die Erkundung darstellt.

Jüngste Forschungsergebnisse deuten darauf hin, dass eine semantisch geführte,
zielgerichtete Erkundung die Effizienz der Lokalisierung eines Zielobjekts verbessern
kann, indem der Roboter auf zielrelevante Bereiche gelenkt wird. Modernste
Methoden für dieses Problem nutzen Vision-Language-Modelle (VLMs), um se-
mantische Führung zu bieten, indem sie beobachtete Bilder von Regionen mit
der sprachlichen Beschreibung des Zielobjekts vergleichen und so die semantische
Ähnlichkeit schätzen. Bei diesen Ansätzen wird jedoch häufig die Mehrdeutigkeit
von Beschreibungen in natürlicher Sprache übersehen, was zu Unsicherheiten bei
VLM-basierten Vorhersagen führt. Wird diese Unsicherheit nicht berücksichtigt,
kann dies zu übermäßigem Vertrauen, fehlgeleiteter Erkundung und geringerem
Erfolg beim Auffinden des Zielobjekts führen. Darüber hinaus verwenden VLM-
basierte Erkundungsansätze oft kurzsichtige Strategien, die sich bei jedem Schritt
auf die Erkundung der semantisch ähnlichsten Region konzentrieren, ohne zukün-
ftige Beobachtungen explizit zu berücksichtigen. Dieser Ansatz ist in vielen Fällen
effektiv, kann jedoch in komplexen Umgebungen dennoch limitierend sein.

Wir stellen ein neuartiges, auf semantischer Unsicherheit basierendes aktives
Wahrnehmungssystem vor, um diese Herausforderungen zu bewältigen. Unser
System integriert Wahrnehmung, Kartierung und Planung für eine effektive Ob-
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jektsuche in häuslichen Umgebungen. Wir nutzen VLMs für die Wahrnehmung,
die es dem Roboter ermöglichen, beliebige Objekte in der Umgebung auf der
Grundlage von Beschreibungen in natürlicher Sprache zu verstehen und zu iden-
tifizieren. Wir erkennen die inhärente Unsicherheit in der VLM-basierten Wahr-
nehmung aufgrund von sprachlichen Mehrdeutigkeiten und stellen eine Methode
zur Quantifizierung dieser Unsicherheit vor, indem wir eine Reihe von sprach-
lichen Beschreibungen erzeugen, die denselben semantischen Kontext vermitteln,
aber unterschiedliche Interpretationen erfassen. Unter Verwendung dieser Un-
sicherheit konstruieren wir eine probabilistische metrisch-semantische Karte, die
die Erkundung auf der Grundlage der geschätzten semantischen Ähnlichkeit des
Zielobjekts mit den verschiedenen Regionen in der Umgebung leitet.

Unsere Beiträge sind vielfältig. Erstens schlagen wir eine Methode zur Quan-
tifizierung der Unsicherheit in der semantischen Ähnlichkeit vor, die sich aus der
VLM-basierten Wahrnehmung ergibt. Zweitens entwickeln wir eine probabilistis-
che Karte, die die Unsicherheit in der semantischen Ähnlichkeit erfasst. Drittens
entwickeln wir zur Bewertung der Effektivität unserer Methode beim Auffinden
von Objekten sowohl kurzsichtige als auch nicht kurzsichtige Wegplanungsmetho-
den, die diese Karte zur Erkundung verwenden. Die Einbeziehung beider Ansätze
ermöglicht es uns, zu beurteilen, wie jede Strategie unter Unsicherheit abschnei-
det, insbesondere in komplexen Umgebungen, in denen die Erkundung ein Gle-
ichgewicht zwischen unmittelbaren und zukunftsorientierten Entscheidungen er-
fordert. Unsere Wegplanungsmethoden verwenden eine informationstheoretische
Belohnungsfunktion, um ein Gleichgewicht zwischen der Erkundung von Regionen
mit hoher erwarteter semantischer Ähnlichkeit und der Erkundung von Regionen
mit hoher Unsicherheit herzustellen. Experimentelle Auswertungen zeigen, dass
unser Ansatz bei dieser Aufgabe vergleichbare oder geringfügig niedrigere Er-
folgsquoten als State-of-the-Art-Ansätze erzielt, während eine auf Unsicherheit
basierende Erkundung durchführt wird. Abschließend stellen wir unsere Imple-
mentierung der Methode der Community als Open Source zur Verfügung.
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Task Description

Building robots that operate in households as personal assistants is a longstanding
goal of the field of robotics and artificial intelligence. Embodied AI has recently
emerged as a research field that emphasizes the usage of AI techniques, such
as computer vision and natural language processing within physical entities, to
achieve this goal. The survey by Srivastava et al.[109] reports that the top 100
tasks humans want robots to perform in their houses revolve around cleaning,
cooking, and rearranging objects. A prerequisite to achieving such composite
tasks is the capability to navigate to specified objects present in the environment
autonomously. This is referred to as the object goal navigation (ObjectNav) task
in literature [6] and serves as the focal point of this thesis. Large variations
across different households and complexity in terms of their layouts, structures,
and objects necessitate a robot to understand the geometric and semantic as-
pects of its environment for planning. Previous works on indoor robot scene
understanding have focused on using particle filter-based mapping and localiza-
tion approaches [36] and metric-semantic maps [45, 7, 37] to map and localize
in an environment accurately. For indoor navigation, sampling-based path plan-
ners [50], deep reinforcement learning [118], and active sensing using informative
path planning [115] have been used. Most approaches rely on deep learning-based
perception [92, 89]. Recently, works like Gadre et al. [30, 52] proposed utilizing
large-scale transformer-based foundational models for perception in scene explo-
ration, specifically open vocabulary feature detection [85, 79] and segmentation
algorithms [54], that provide detection and segmentation of objects with natural
language labels in an open world setting unlike previous deep learning methods,
which has led to their utilization as a perception backbone for ObjectNav.

Approaches to tackle the open vocabulary ObjectNav task usually consider
the environment to be map-based or map-less. In the map-based scenario, works
focus on map construction while navigation is considered a downstream task.
Liu et al. [68] demonstrate object search and navigation on an open vocabulary
3D reconstructed static map. Hughes et al. [45] introduce a real-time closed-
vocabulary 3D scene graph representation for mapping. Gu et al. [37] improve
this by creating an open vocabulary metric-semantic 3D scene graph, but their
approach is not real-time. Another notable state-of-the-art approach is VL-Maps
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by Huang et al. [44] where the authors create a 2D metric semantic map by fusing
features from an open vocabulary segmentation network with RGBD camera
observations, which can also be used for obstacle avoidance. However, planning
is only possible after the environment is mapped and scene exploration is not
dealt with in this approach. On the other hand, in the map-less scenario, research
focuses on exploration with active perception to locate the object. Recent works in
this area employ vision language models (VLMs) as object detectors [52, 30, 103],
develop transformer-based architectures [122, 27, 10], and use LLMs for planning
[103]. Yokohama et al. [128] develop VLFM to semantically bias frontier-based
exploration based on the inductive biases of VLMs, allowing them to explore
regions most correlated to the desired object. However, a primary drawback of
their approach is the use of handcrafted update functions instead of probabilistic
map updates for likelihood estimation. Additionally, their reliance on frontier-
based exploration, a myopic planning strategy, optimizes only for the immediate
action without considering future observations.

This project will aim to develop an approach for addressing the ObjectNav
problem in household environments. The approach will search for a static object
by actively exploring a static 3D environment having no prior map. During
exploration, it will build a probabilistic open vocabulary map which will be used
for active re-planning. As starting points, exploration and map building will be
performed similarly to VLFM. To be consistent with the assumptions of the above
method, RGB-D images from the forward-facing camera of a mobile robot and its
error-free poses are assumed as inputs. The project will address the limitations
of baseline methods by developing a hybrid exploration and mapping pipeline
which will aim to find arbitrary objects, in unfamiliar household environments.
The approach will develop a probabilistic semantic map and actively explore an
environment, using non-myopic strategies.

Experiments will aim to show the effects of building a probabilistic open vo-
cabulary map and planning in a non-myopic manner during exploration on the
ObjectNav task. Using this strategy, the robot will actively explore the environ-
ment to find the target object. We plan to evaluate our approach against the
baseline VLFM [128] representing a state-of-the-art method for open vocabulary
mapping and exploration. We will be using metrics like the success rate of find-
ing the object, path efficiency and distance traveled [1], which will highlight the
robustness and efficiency of using a hybrid mapping-exploration approach. Ex-
periments on household scenes in a high-fidelity simulator like Habitat [82] and
using real-world datasets such as the HM3D and the MP3D Dataset [86, 16] will
aim to show that the method can be applied on realistic household environments
and can provide a basis for ObjectNav in households.

xii
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Chapter 1

Introduction

In a rapidly evolving world, robots are poised to play a pivotal role in improv-
ing quality of life by automating time-consuming household tasks, increas-
ing convenience, and supporting independent living. Recent advancements
have led to the emergence of versatile, general-purpose robots capable of

performing a wide range of household tasks, including cleaning, tidying up, cook-
ing and assisting individuals. These robots represent a shift from single-task
robots, such as those designed for automatic vacuuming, to more autonomous
systems, as illustrated in Figure 1.1. However, enabling robots to autonomously
perform diverse household tasks presents significant challenges, which motivate
the research presented in this thesis. Most household tasks, such as tidying up
or preparing meals, require robots to locate and identify specific objects within
cluttered environments. The diversity of household environments, with numerous
types of objects and varied room layouts, makes these tasks challenging.

Addressing this challenge requires the development of methods capable of re-
liably locating user-specified objects in complex, unstructured environments with
high efficiency. In robotics, this is formalized as the object goal navigation (Ob-
jectNav) problem [6, 1, 112], where the objective is to direct a robot to find
a specified object based on user instructions within an unfamiliar environment.
This problem entails two primary difficulties. First, recognizing a potentially
limitless range of objects, that exhibit diverse visual characteristics, including
varying shapes and sizes. Second, efficiently searching various household areas
despite the substantial uncertainty about the object’s location. Given the inher-
ent partial observability of the environment, where the robot can only perceive
limited regions at a time, it must continuously make informed estimates about the
target’s potential location based on the information collected during the search.

Overcoming these challenges necessitates an integrated approach that com-
bines perception and action in a mutually informative process. Perception in-
volves two critical components: spatial understanding, which entails interpreting
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Figure 1.1: Household robots are evolving from task-specific machines, such as vacuum cleaners
or lawn mowers (left), to general-purpose assistants capable of tackling a diverse array of tasks
such as tidying up (right). Courtesy: (from left) iRobot, Scythe Robotics, Alphabet, Boston
Dynamics, Hello Robot, 1X Technologies

the environment’s layout and geometric structure, and semantic understanding,
which involves recognizing objects and leveraging contextual information to infer
probable locations. These components collectively enable the robot to refine its
predictions about the target’s likely position as new data is obtained. However,
perception alone is insufficient to resolve the inherent uncertainty. The robot
must also act on this information to actively reduce ambiguity in the search pro-
cess. This requires goal-directed exploration strategies that exploit both spatial
and semantic insights, continuously updating the search approach as new obser-
vations are integrated. By dynamically adapting its strategy based on real-time
data, this integrated perception-action framework allows the robot to navigate
the variability and complexity characteristic of household environments.

In this thesis, we address the challenges of object search in household envi-
ronments by proposing a framework that enables robots to locate target objects.
Our approach equips robots with the ability to perceive a wide range of objects
while continuously updating their understanding of the environment through a
metric-semantic map, which integrates both spatial and semantic information.
This map allows the robot to represent the environment in a way that accounts
for perception uncertainties and guides its exploration process. By employing
planning algorithms that utilize the information in the map, the system directs
the robot toward regions where the target object is more likely to be found,
based on estimates of uncertainty from perception. This uncertainty-aware strat-
egy prioritizes exploration in areas with a higher probability of success, allowing
the robot to adapt to the complexity and variability of household settings. The
methods presented in this thesis leverage the uncertainty in the perception sys-
tem not as a limitation but as an opportunity to interpret contextual clues, guid-
ing the robot to locate objects in diverse and unpredictable environments. Our
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CHAPTER 1. INTRODUCTION

Figure 1.2: Misplacing objects is a frustrating common occurrence in everyday life. Household
robots can become effective companions to humans by helping them find misplaced objects.

approach achieves performance comparable to or minimally worse than state-of-
the-art methods in object search tasks while being more theoretically principled.

1.1 Motivation

Developing intelligent robotic assistants that can find objects effectively in real-
world environments remains a significant challenge in robotics [6, 49, 112]. The
relevance of the task becomes evident when considering common human experi-
ences, such as misplacing everyday objects. In everyday scenarios, people often
forget where they placed essential items, such as wallets, phones, or glasses, as
depicted in Figure 1.2. This can disrupt routines and cause considerable frus-
tration. Furthermore, scenarios, such as assisting elderly individuals at home or
cooking meals for hospital patients, involve composite tasks that require com-
pleting several sub-tasks. For example, cooking a meal may involve fetching
various ingredients, which first requires the ability to locate them, relying heavily
on a robot’s object-finding skills. Therefore, a fundamental capability needed
for general-purpose robots is to locate arbitrary objects in unexplored household
environments.

Previous research on this problem has often used exploration strategies de-
signed to maximize the area covered by a robot, employing metric maps to track
explored regions. These methods rely on simple heuristics, such as navigating to
frontiers, which are boundaries between explored and unexplored areas, or target-
ing map corners [126, 125, 71]. However, these approaches are inherently myopic,
focusing only on immediate navigation actions without planning for future steps
or considering the overall map and environment. Furthermore, they lack semantic
understanding and a goal-directed approach, i.e, they do not actively incorporate
information about the target object during exploration or prioritize areas that
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1.1. MOTIVATION

are semantically relevant to the object. As a result, these methods often lead to
inefficient exploration and excessive searching when attempting to locate specific
objects. In order to explore in a goal-directed way, deep learning-based tech-
niques [105, 127, 73, 124, 122] offer an alternative by training neural networks
in simulations to learn scene representations and exploration strategies. While
effective for objects encountered during training, they struggle to generalize to
previously unseen objects due to reliance on a fixed set of categories used during
training. This limitation is compounded by the diversity of user requests, which
are specified in natural language and vary in detail, such as “find my red sweater”
or “find my red sweater with white stripes”. Even if the model is trained on the
object “sweater”, it would not be able to differentiate between these specific vari-
ations. Addressing such varied requests requires systems that can handle a wide
range of object types.

Pre-trained vision-language models (VLMs) [85, 63, 62] offer a promising solu-
tion for bridging the gap between rigid training and open-ended real-world tasks.
Trained on large datasets of paired visual and textual data, these models can
interpret textual descriptions and associate them with corresponding visual fea-
tures, enabling “open vocabulary” perception. This capability means that the
number of object categories is not predetermined but can be inferred from the
relationships between images and text, allowing the models to adapt to a broader
range of objects. Integrating VLMs into exploration strategies provides a more
flexible and semantically guided approach to finding arbitrary objects. Recent
efforts have combined VLMs with traditional techniques like frontier-based explo-
ration (FBE) [30, 52, 128, 134], where exploration focuses on frontiers predicted
by the VLM to have a high likelihood of containing the target object. However,
these approaches inherit the myopic limitations of FBE, which performs one step
utility maximization on frontiers, without considering future actions across the
entire map. In addition, these approaches employ the greedy strategy of select-
ing the frontier the VLM predicts most likely to lead to the target object. This
assumes the model’s predictions are entirely reliable, ignoring the inherent un-
certainty in perception models. Since perception naturally involves some degree
of uncertainty, failing to account for it can result in inefficient exploration and
missed opportunities for object detection. This becomes especially relevant for
multimodal perception models such as VLMs, where the sources of uncertainty
stem from the individual uncertainties of the modalities- visual and linguistic.
When these uncertainties converge, they are compounded, ultimately amplifying
the overall uncertainty in the system. Therefore, there is a need for strategies
that incorporate uncertainty awareness, enabling exploration to adapt based on
the confidence in the model’s predictions and leading to informative exploration.
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CHAPTER 1. INTRODUCTION

Figure 1.3: In this thesis, Perception, Mapping, and Planning form the foundation of the robot’s
ability to perform the Object Goal Navigation (ObjectNav) task.

1.2 Goal and Main Contributions

In this thesis, we address the ObjectNav problem by presenting a novel approach
that enables robots to locate a wide range of objects in unexplored household envi-
ronments based on the target object’s textual description (e.g., “clothes” or “coffee
table”). The main contribution of this work is a semantic uncertainty-informed
active perception strategy for object search, integrating perception, mapping, and
planning to locate arbitrary objects in household environments. For perception,
our approach utilizes a deep learning model trained on visual and textual data to
process the robot’s visual feed and the object description. This allows the system
to recognize a diverse range of user-specified target objects commonly encoun-
tered in household environments. However, perception is inherently uncertain
due to ambiguities in language interpretation, environmental factors like light-
ing and viewpoint, and how the model encodes information. To manage these
uncertainties, we incorporate semantic uncertainty from VLMs into the percep-
tion process, allowing the robot to identify objects based on semantic similarity
while accounting for ambiguity. To support this uncertainty-aware perception,
we develop a metric-semantic mapping approach that integrates both spatial and
semantic information. The mapping process captures the spatial layout of the
environment while incorporating the uncertainty in the semantic similarity of
different regions of the environment in context of the target object. This allows
the robot to represent the environment in a way that reflects these uncertainties,
providing a more robust foundation for decision-making during exploration.

Building on this map representation, we design exploratory planners that
guide the robot’s search strategies. These planners leverage the quantified un-
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1.3. OVERVIEW OF THE THESIS

certainty to focus exploration on regions with a higher likelihood of containing
the target object, while accounting for the reliability of semantic predictions. By
dynamically adjusting the search strategy based on the confidence in the predic-
tions, the robot can prioritize areas with a higher probability of success, resulting
in more adaptive and efficient search processes. As detailed in the following chap-
ters, this approach equips robots to locate arbitrary objects in diverse household
environments by performing uncertainty-informed active perception for object
search. An overview of our approach is presented in Figure 1.3. In summary:

• We develop a training-free open vocabulary semantic uncertainty-informed
active perception-based pipeline which explores an environment to search
for a target object.

• We use VLMs to semantically guide exploration towards semantically sim-
ilar regions, detect objects and show that they are susceptible to data un-
certainty when used in downstream tasks in robotics.

• We develop an uncertainty quantification method for VLMs and create a
probabilistic map representation which is more theoretically principled than
current approaches.

• We develop an information theoretic reward function for two planning
methodologies (myopic and non-myopic) using our probabilistic map to
make uncertainty informed decisions and demonstrate that the myopic
strategy performs marginally worse than state-of-the-art myopic planners
which do not use a probabilistic map.

1.3 Overview of the Thesis
This thesis aims to develop a training-free, open vocabulary semantic uncertainty-
informed active perception approach for addressing the ObjectNav task. A broad
overview of related work in this area is provided in Chapter 2. Chapter 3 presents
the fundamental techniques in perception, mapping, and planning that form the
foundation of this thesis. A detailed explanation of our proposed approach is
outlined in Chapter 4. Chapter 5 offers a comprehensive evaluation, including
both quantitative and qualitative analyses, comparing our approach to state-of-
the-art ObjectNav methods and discussing its limitations and failure modes. Ad-
ditionally, we plan to open-source the complete pipeline to support and advance
research on ObjectNav within the robotics community.
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Chapter 2

Related Work

Active perception—a theory rooted in cognitive science—posits that
agents actively engage with their environment, using prior knowledge
to enhance perception. This idea has become increasingly popular in
the field of robotics in recent years, allowing robots to exploit prior

knowledge to achieve goal-directed behavior. In this chapter, we first present a
brief introduction to active perception and relate to how it is useful in solving
the object goal navigation problem. We then explore literature relevant to the
core problem of this thesis: open vocabulary ObjectNav, a challenging task that
integrates multiple robotics sub-fields such as perception, mapping, and planning.

The origins of active perception can be traced back to Helmholtz’s founda-
tional theory of perception [42] which proposed that perception is an inferential
process driven by both top-down (sensory-driven) and bottom-up (knowledge-
driven) counter-streams of processing. This theory was further developed in psy-
chology and computational neuroscience [28, 80], where researchers highlight that
perception and action are interlinked. In addition to passively perceiving the envi-
ronment, an agent actively seeks relevant or goal-directed information to enhance
its internal world model, in turn enhancing its perception ability. In robotics,
one of the earliest references to active perception is attributed to Ruzena Ba-
jcsy’s pioneering work in 1988 on gaze control [2]. Her research introduced active
perception to the field by combining a bottom-up, data-driven approach for im-
age recognition with a top-down, knowledge-driven method for data acquisition
within a single pipeline, subsequently extending it to robot path planning and
exploration [4, 3]. Despite the potential, Bajcsy’s work did not see widespread
adoption initially due to the limitations of image processing technology at the
time, which struggled to deal with high-level concepts like object recognition
or semantic understanding. Instead, research continued to focus primarily on
bottom-up perception, extracting low-level information from sensory data, e.g.,
identifying edges, corners, or obstacles[106, 40, 95, 70], for downstream tasks.
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In the last decade, the advent of deep learning has revitalized interest in
active perception within the robotics domain. Deep learning techniques, particu-
larly convolutional neural networks (CNNs) [57], are trained on large-scale labeled
datasets and can learn complex visual representations directly from data. This
enables them to learn priors corresponding to high-level concepts such as objects.
CNNs have demonstrated exceptional performance in tasks like image classifi-
cation, object detection, and semantic segmentation, outperforming traditional
image processing methods. Object detection, for instance, involves identifying
both the position and category of objects within an image. This is commonly
achieved using CNN models trained on image datasets, with annotated classes
and bounding boxes. An extensive dataset which is widely used for training
object detectors is the MS-COCO dataset [66], which has 80 object classes and
1.5 million object instances. Two-stage approaches to object detection such as
region-based CNNs (RCNNs) [34, 33, 91], first extract regions that likely contain
objects and then classify these regions, providing a bounding box, object class,
and class probability. While these methods are accurate and robust, they tend
to be computationally expensive and slow for inference. To address this, Redmon
introduced the YOLO architecture [87] which utilizes a single-stage approach.
By dividing each image into grids and detecting objects per grid cell, YOLO
achieves faster inference at some cost to accuracy. Various improvements of this
architecture have since enhanced both accuracy and efficiency [88, 31, 61].

However, when considering the challenges of deploying these models in real-
world robotics tasks such as ObjectNav, in which a robot must navigate to any
object specified by the user, the limitation to a fixed set of object classes becomes
a critical constraint. In real household environments, the number of object cat-
egories far exceeds the 80 classes available in MS-COCO. This limitation stems
from the supervised training paradigm, which restricts the model’s capability to
classify only those object classes that it is explicitly trained on. In addition, in
order to generate high-quality data for supervised learning, labor-intensive and
costly human annotated data is required. Consequently, while these models per-
form well on in-distribution classes, they struggle with out-of-distribution classes,
significantly reducing their effectiveness in more diverse real-world scenarios. To
overcome the limitations of traditional supervised methods for object detection,
open-set perception was developed, which treats new classes as background classes
during training and classifies them under a common class during inference. To
generate different class labels for each newly encountered object, zero-shot learn-
ing (ZSL) driven object detection was proposed by Bansal et al. [5] which ex-
tends a detector to generalize from in-distribution classes to out-of-distribution
classes,using multi-modal learning. The approach projects both images and class
labels embeddings into a common vector space, exploiting semantic relationships
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CHAPTER 2. RELATED WORK

Figure 2.1: Concept of Open Vocabulary Detection. Courtesy: Wu et al. [119]

between in-distribution and out-of-distribution class labels to transfer a model
trained on in-distribution classes to out-of-distribution classes. However, these
methods lack examples of unseen objects and treat these objects as background
objects during training. As a result, during inference, the model identifies novel
classes solely based on their pre-defined text embeddings, limiting exploration
of the visual information and relationships of those unseen classes. Open vo-
cabulary learning, particularly in object detection and segmentation trains on a
subset of base classes and allows for inference on both base and novel classes. A
key advancement over zero-shot learning is the incorporation of visually related
language data, as auxiliary supervision. This use of language data requires less
labeling effort, making it a cost-effective alternative to traditional annotations,
while introducing a much broader and flexible vocabulary, which enables models
to generalize to novel classes. An analysis of the three learning paradigms is
shown graphically in Figure 2.1

With the advent of the transformer architecture, cross-modal learning, which
integrates data from different modalities such as text and images, has become
the dominant method for a variety of core perception tasks including segmenta-
tion and object detection. Advances in cross-modal training have also driven the
development of image-text matching models, which align images with their corre-
sponding textual descriptions. A typical image-text matching pipeline consists of
a visual semantic encoder, as described by Frome et al. [29]. To enhance general-
ization, unsupervised or weakly supervised methods, like Vision-Language Mod-
els like Contrastive Language–Image Pre-training (CLIP) [85] were introduced.
CLIP was trained on a large dataset of carefully curated 400 million image-text
pairs, allowing it to generalize beyond the closed-set classification problem, per-
forming well on unseen objects and environments. For instance, CLIP claims
Resnet50-level accuracy on the ImageNet dataset [97], without being trained on
any of the images from the dataset. This makes it very relevant for robotics
applications, where a robot might encounter a lot of different objects which fall
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outside of the class of any object dataset like MS-COCO. Other approaches like
BLIP [63] and BLIP-2 [62] train on frozen image and text encoders and ALIGN
[47] trains on a larger noisier dataset, improving their performance on unseen ob-
jects and scenarios, demonstrating the potential of these approaches to overcome
the limitations of traditional supervised method. In parallel, object detection
has also witnessed innovations aimed at overcoming the limitations of traditional
supervised learning methods.

Even though these models have generalization to out-of-distribution classes,
on the MS-COCO dataset, they underperform models like YOLOv7 [116] that
are explicitly trained on it. In our approach for ObjectNav, detecting the tar-
get object is a necessary criterion for the successful termination of the object
search process. We have a hybrid object detection system, which switches between
GroundingDINO for open vocabulary object detection i.e, for classes outside of
the MS-COCO classes and YOLO v7, which is used to detect objects that per-
tain to the MS-COCO classes due to its superior accuracy on the dataset. By
incorporating state-of-the-art object detection methods for both in-distribution
and out-of-distribution detection, we ensure a robust and comprehensive solution
to object detection for ObjectNav.

The ObjectNav task, aimed at searching for objects in an unexplored envi-
ronment, is intrinsically linked to active perception as it involves goal-directed
navigation based on prior beliefs, which are possible to learn with deep learning
methods. ObjectNav approaches generally follow two paths: end-to-end learn-
ing or modular approaches. End-to-end learning [124, 14, 127, 73] directly maps
inputs to actions and learns both visual representations and navigation policies
simultaneously. Such approaches are usually trained in simulation environments
due to the cheap data generation capabilities of realistic simulators like Habitat
and Thor [113, 56]. In such frameworks, the robot encodes observations to ex-
tract features and embeds the goal and previous action for the policy network
input. The policy network then learns the action decision-making based on the
reward collected during training. These methods often integrate various visual
representations, such as RGB images, bounding boxes, and semantic segmen-
tation masks, into the policy network [67]. Shen et al. [105] utilize different
representations as inputs to different policies and then fuse actions at the end.
Yadav et al. [124, 122] learn visual representations offline from images of indoor
environments using self-supervised learning, and then fine-tune for ObjectNav. A
line of works [14, 24, 25] explore scene-object relationships, like room layout and
object occurrences to localize the target object based on its similarity with them.
However, end-to-end methods face challenges such as sample inefficiency, com-
plex training regimes, and poor generalization to new environments. In addition,
they struggle to generalize to out-of-distribution objects.
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Modular approaches to ObjectNav [30, 128, 134, 130, 19] are different from
end-to-end architectures as they do not have a single architecture that maps ob-
servations to actions. Instead they have multiple components like perception,
mapping, long horizon planning and point-to-point navigation which together
make the whole pipeline work. Modular methods often feature a mapping mod-
ule that constructs a representation of the environment, a policy module that
decides on long-term goals, and a local path-planning module that outputs spe-
cific actions, where some components are learned while others rely on classical
methods. Scene representations in these systems can take various forms, ranging
from feature-based maps that store semantic features to metric representations
like grid maps [77, 110]. Some approaches also represent the environment in terms
of hierarchies of smaller sub maps or graphs which helps reduce the computational
burden of mapping and planning in extensive environments [43, 7, 93, 94, 45].
The integration of vision-language models has further enhanced the richness of
these representations, allowing for maps that could encode semantic information
based on open vocabulary features. A leading example is VL-Maps by Huang et
al. [44] which constructs an 2D metric-semantic top-down map by merging fea-
tures from an open vocabulary segmentation network with geometric data. Other
approaches [18, 68] develop similar open vocabulary maps. Moreover, several
methods build scene graphs using open vocabulary features [37, 117]. However,
such dense maps are usually computationally expensive and are not built incre-
mentally in real time, so they cannot be used for online exploration but can be
used to navigate to objects after the map has been created.

In order to search for an object, a global planner or policy is needed. Long
horizon planning policies in modular methods typically aim to explore the initially
unknown environment. In their work SemExp, Chaplot et al. [17] introduce
a framework using a 2D semantic segmentation network to build explicit local
gridmaps, which are accumulated to get a global top down semantic grid map of
the environment. Their learned navigation policy uses both local and global maps
to predict a long term goal for navigation. Other works like Stubborn [71] choose
a simpler exploration objective, by navigating from corner to corner in the map.
Rudra et al. [96] sample viewpoints from a 2D occupancy grid map and compute
the probability of spotting the target at these points. A large number of works
utilize the frontier-based exploration (FBE) policy proposed by Yamauchi [126,
125, 13]. FBE operates on the principle that moving towards the boundary
between known and unknown areas yields the most new information about the
environment. In FBE, a robot incrementally expands its known environment by
navigating to the boundary (or frontier) between known and unknown regions.
Zero Shot ObjectNav methods like Clip on Wheels (CoW) by Gadre et al. [30]
follow the FBE approach [126] and navigate to the closest unvisited frontier from
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the robot’s position until the target object is detected using CLIP features or
an open vocabulary object detector. However, uninformed greedy exploration
biases the policy to explore low importance regions. To counteract this, many
methods for choosing the next frontier have been proposed, such as classical
methods that select frontiers based on the expected amount of information a
robot would gain, based on the number of frontier cells and their distance from
the robot [75]. Li et al. [65] develop a method to estimate the expected reward at
frontiers to informatively decide which frontier to navigate to. They train a CNN
to estimate properties associated with each frontier like the expected unexplored
area beyond each frontier and expected time steps required to explore it and
focus on enhancing coverage of indoor environments. Dorbala et al. [22], Yu
et al. [130] and Zhou et al. [134] use large language models like GPT-3 [11] to
infer common sense relations between objects and rooms to select frontiers that
would be valuable to find the target object. Chen et al. present SemUtil [19] and
use BERT to embed class labels of objects detected near the frontiers and then
compare them to the text embedding of the target object to select the frontier to
explore next. Yokohama et al. develop VLFM [128] which uses Vision Language
Models to project cosine similarities of egocentric RGB frames to build a 2D
“value” map , while simultaneously building an occupancy grid map for obstacle
avoidance. They show state-of-the-art performance on the ObjectNav task and
also demonstrate their approach in the real world. Since such algorithms do not
balance between exploration and exploitation, an improvement was developed to
incorporate Monte-Carlo tree search (MCTS) [35]. There have also been attempts
to combine MCTS and frontier-based planning to help the tree search when it
gets stuck in local minima [59].

Finally, to navigate from the robot’s position to the navigation goal generated
by the long horizon planning policy, modular approaches adopt point-goal nav-
igation algorithms. Point-goal navigation assumes that the robot’s initial state
and the goal explicitly defined in the coordinate frame of the environment to
plan collision free trajectories. Classical search-based planners like Dijkstra[21]
or A* [41, 8] treat the initial and goal states as nodes on a tree and then use
graph traversal algorithms to find the shortest path. Sampling-based tree traver-
sal algorithms, such as Probabilistic Roadmaps [51] and Rapidly Exploring Ran-
dom Tree (RRT) [60], sample points in the search space, making planning in
higher dimensional and continuous action spaces tractable, alleviating the expo-
nential computational complexity. Variants of these approaches [50, 46] claim
faster convergence while guaranteeing asymptotic optimality. Deep learning-
based end-to-end approaches such as reinforcement learning or imitation learning
learn to directly map observations to actions and have been used for waypoint
planning [137, 129, 58, 74, 102]. Notably, the DDPPO policy proposed by Wi-

12



CHAPTER 2. RELATED WORK

jmans et al. [118] enables point-goal navigation using image frames and ground
truth poses, eliminating the need for a map to plan, achieving a near perfect
success rate and setting a new standard for indoor navigation, which has been
used in many ObjectNav policies [32, 128].

In this thesis, we aim to build a modular pipeline for Zero Shot Open Vo-
cabulary Object Goal Navigation, to develop a training-free approach to solve
this problem, utilizing frozen vision-language models as priors to build a seman-
tic map similar to VLFM [128]. We focus on uncertainty quantification of these
models to enhance the map and utilize classical exploration pipelines for long
horizon planning to avoid training complexities and the lack of generalization to
out-of-distribution scenarios of end-to-end approaches. A concurrent work in this
direction is from Ren et al. [90] which quantifies uncertainty in VLMs from a
single viewpoint and uses FBE. In contrast to this, we quantify uncertainty for
both viewpoint as well as text prompts in a single Bayesian framework and use
an information-theoretic reward function to drive exploration.
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Chapter 3

Basic Techniques

The ObjectNav task requires a robot to explore an unfamiliar envi-
ronment in order to search for a user-specified target object by the
user through a natural language description. Addressing this task
necessitates that the robot perceives arbitrary objects in the envi-

ronment, maintains a representation of its surroundings, and plans exploration
based on this representation to navigate toward the target object. This chapter
outlines the core techniques that form the foundation of our approach to address
the challenges of this task. We begin by introducing the object goal navigation
problem in Section 3.1. Given the modular nature of our active perception ap-
proach, consisting of perception, mapping, and planning components, we provide
a conceptual background on these key aspects. In Section 3.2 we introduce the
reader to open vocabulary perception, which we utilize to perceive arbitrary ob-
jects. We discuss grid mapping in Section 3.3 which relate to our metric semantic
map representation. The chapter concludes with an overview of MCTS planning
in Section 3.4, which forms the basis of our non-myopic planner.

3.1 Object Goal Navigation
The task of Object Goal Navigation or “ObjectNav” as defined by Batra et al.
[6] requires an robot to navigate to an instance of a specified object category
from a predefined set of object categories in an unseen environment. The robot
does not receive a map of the environment and must navigate using its onboard
sensors: an RGB-D camera and a GPS+Compass sensor which provides position
and yaw. These sensors are assumed to be noiseless. In practice, the set of object
categories are restricted to a fixed set of coarse descriptions of objects (e.g.,“cup”)
pertaining to the categories of the MS-COCO dataset [66]. Recent works [19, 30,
128, 22] extend this definition to allow for arbitrary natural language descriptions
of objects (e.g., “cat shaped mug”, “cup under the table”), which extends the set
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Figure 3.1: This figure shows a typical object goal navigation (ObjectNav) task in which a
robot needs to explore an unknown indoor environment in order to search for an object. At
each timestep the robot receives an observation from its RGB-D and GPS+Compass sensors,
which it uses to perceive the environment and to localize itself. In this example, the target
object that the robot needs to find is a “bed”. Courtesy: Sun et al. [112]

of object categories to an infinite set.
We adopt this extended definition and formally define the ObjectNav task

as an open-world goal-directed navigation task, where a robot is initialized in an
unknown environment e ∈ E, where E denotes the set of environments. The robot
is initialized at a random pose xw

0 = (vw0 , r
w
0 ), where vw0 ∈ R3 and rw0 ∈ SO(2)

are the robot’s starting position and rotation in the world coordinate frame w.
We define the set of all object descriptions as O and the set of all objects in the
environment as G. Based on the natural language description of the target object
o ∈ O, the robot is required to navigate to an object g ∈ G which is present in
the environment with pose xw

g and matches the description o. There is a many-
to-many relationship between the elements of O and G, formally captured as
R ⊆ O×G. For instance, target object descriptions in O such as “chair”, “brown
chair”, “dining chair” can all describe the object “chair” in G if it has matching
characteristics. Additionally, there can be many instances of g present in the
environment, which fit the description of o, i.e., there can be many chairs in the
environment that match the target object “chair”.
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The goal of ObjectNav is to navigate to g as described by o. In order to find
g, the robot explores the environment, with the duration of search defined as an
episode τ ∈ E is defined by τ = (e, o, xw

0 ) with e ∈ E , g ∈ G and E denoting
the set of navigation episodes. Each episode τ is an object finding task with a
fixed episode length T , wherein at each timestep t ∈ T , the robot executes an
action at from its action space A to navigate in the environment. A consists of
four actions: aleft, aright, aforward, astop. At each timestep t, the robot receives an
egocentric visual observation It = (Irgb

t , Idepth
t ) from a noiseless RGB-D camera,

where Irgb
t ∈ RH×W×3 for the RGB image and Idepth

t ∈ RH×W for the depth
image and pose xw

t from a noiseless GPS+Compass sensor. If the robot is within
c meters of xw

g and g is visible from xw
t , the robot calls the special action astop.

Episodes terminated by the robot under this criterion are considered successful.
An episode is automatically terminated if the robot exceeds the episode length
T and is considered to be unsuccessful. A typical ObjectNav task is shown in
Figure 3.1 where a robot has to navigate to an object in the environment.

3.2 Open Vocabulary Perception
The ability to detect and reason about the wide range of objects in real-world
household environments is crucial for success in ObjectNav. As delibrated in
Chapter 2, handling this diversity is challenging for traditional supervised learning
methods, which are typically limited by closed-set class definitions, constrained
class annotations, and the high costs of manual data labeling. As a result, fully
supervised models often struggle to identify and reason about objects outside of
predefined categories. To address these limitations, unsupervised or weakly super-
vised approaches, such as vision language models (VLMs), have gained promi-
nence in the field of visual perception tasks. VLMs are trained on image-text
pairs, aiming to maximize the similarity between correct image-text pairs within
a shared feature space while minimizing similarity with incorrect pairs. Since
large scale internet data used to train VLMs, they contain a broad correlated vo-
cabulary of semantic concepts from images and text in the model’s feature space,
a capability referred to as “open vocabulary”. This enables better generalization
to new categories which were not present in the training data.

VLMs have become the go-to approach for improving concept diversity and
model generalization across various scene understanding tasks, including classi-
fication, object detection, and segmentation. The open vocabulary perception
capability of VLMs makes them well-suited for object perception tasks, enabling
the recognition of the diverse array of objects that can be present in indoor envi-
ronments. The success of VLMs is largely attributed to self-supervised training on
multimodal image and text data, in which transformers [114, 23] have emerged as
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the dominant architecture. State-of-the-art VLMs, such as CLIP [85], are trained
on carefully curated high-quality image-text pairs. The CLIP model includes both
a text encoder and an image encoder, as shown in Figure 3.2. The text encoder
is a standard transformer architecture [114] that converts a text prompt pi ∈ P
specified in natural language into a text embedding lpi ∈ R512 which represents
the text prompt. The image encoder is a vision transformer (ViT) [23] that con-
verts an image Ii ∈ I into an image embedding lIi ∈ R512. CLIP is trained on a
batch of N image-text pairs to predict which of the N ·N possible pairings within
the batch are correct. The model learns a joint embedding space by training an
image encoder and a text encoder together. The goal is to maximize the cosine
similarity for the N correct pairs and minimize it for the N2−N incorrect pair-
ings using the contrastive loss, which is a symmetric cross-entropy loss over the
similarity scores. This is equivalent to pulling correct image-text pairs together
while pushing incorrect pairs away in the high dimensional embedding space. An
example of a correct and incorrect pair is depicted in Figure 3.3.

Si(lIi , lpi) = cos(θli) =
lIi · lpi
∥lIi∥∥lpi∥

, (3.1)

Cosine similarity between the feature embeddings lIi , lpi for a single image-
text pair (Ii, pi) where Ii ∈ I and pi ∈ P is defined in Equation (3.1). It is
important to note that cosine similarity is bounded in [−1, 1] where a similarity
of −1 corresponds to the feature embeddings being antiparallel (semantically
irrelevant), 0 corresponds to the embeddings being orthogonal and 1 corresponds
to the embeddings being parallel (semantically highly relevant). However, in
practice, since VLMs are trained for multi-modal alignment with the objective
of maximizing the similarity between matching image-text pairs and minimizing

Figure 3.2: CLIP [85] is a vision-language model (VLM). CLIP has an image and text encoder
which are jointly trained on an internet-scale dataset of image and text data using contrastive
learning (1). CLIP can be used for downstream perception tasks such as image prediction and
image-text matching tasks (2,3). Courtesy: OpenAI
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Figure 3.3: In image-text matching, the goal is to match images with text based on their
semantic relevance. In this example, (left) shows a correct match of an image of a kitchen with
the text prompt “cappuccino”, as the text is semantically relevant to the image. Meanwhile,
an incorrect match of the same image is shown with the prompt “bed” (right).

similarity for mismatched pairs, cosine similarity scores of feature embeddings
encoded through the model are found to be in the [0, 1] interval for well-aligned
VLMs like CLIP.

The process of image-text matching forms a fundamental part of our approach
to searching for the target object in ObjectNav, enabling us to evaluate the se-
mantic relevance between the target object we aim to locate and the current image
captured by the robot. By calculating the cosine similarity, we can determine the
semantic relevance of the observed scene in the purpose of semantically guiding
exploration towards the target object. While CLIP exhibits strong performance
in image-text matching, it has since been outperformed by more advanced mod-
els. At present, the state-of-the-art VLM for image-text matching is BLIP-2
[62].Unlike CLIP, which uses a joint embedding space, BLIP-2 employs separate
pre-trained transformers for encoding images and text. For the image encoder,
BLIP-2 uses CLIP while for the text encoder, it uses the a FlanT5 model, uti-
lizing them as frozen backbones. To bridge these two disconnected embedding
spaces, BLIP-2 trains a transformer called Q-Former.

Given that both CLIP and BLIP-2 have been extensively trained on data from
indoor environments, they are well-suited to our application. In our semantic ex-
ploration pipeline, we use BLIP-2 to guide the robot toward semantically relevant
regions in the observed environment. Cosine similarity from BLIP-2 is used as
the metric to quantify the relevance between images captured by the robot and
the target object description specified by the user in natural language, leveraging
BLIP-2’s enhanced capabilities in image-text matching.

The success of vision-language models has also extended their application
to object detection tasks. Several approaches have attempted to directly apply
CLIP for predicting regions corresponding to objects within images, leveraging
knowledge distillation from CLIP to existing object detectors such as RCNNs [38,
131]. However, as these models are trained on image-text pairs, they exhibit poor
performance in detecting objects due to domain shifts [133],(Figure 3.4)
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Figure 3.4: The CLIP model is effective at relating images to text, making it suitable for image
classification tasks. However, CLIP does not perform as well on region classification, which is
essential for object detection. Courtesy: Zhong et al. [133]

GLIP [64] introduced the concept of grounded pre-training. Grounding refers
to the process of linking or associating abstract linguistic concepts to specific,
observable elements in images, such as objects. Grounded pre-training, in con-
trast to leveraging pre-trained VLMs directly for detection, trains a model with
contrastive training on multi scale image-text features which capture such spe-
cific elements. These features for images are regions or patches and for text
are words and phrases. GLIP uses language phrases like “a person with an
orange umbrella” and aims to align such phrases with images containing both
nouns. This additional data aids in learning aligned semantics at phrase and re-
gion levels. Building upon GLIP’s architecture, Grounding DINO [69] combines
a transformer-based detection model, DINO [15], with grounded pre-training.
When provided with an image-text pair, the model outputs multiple pairs of ob-
ject boxes and noun phrases. As illustrated in Figure 3.5, the model employs a
dual-encoder-single-decoder architecture and operates in five key phases: feature
extraction, feature enhancement, language-guided query selection, cross-modality
decoding, and bounding box refinement.

In the first phase, feature extraction, text and image features are extracted in-
dependently using their respective encoders. In the feature enhancement phase,
these features are fused using attention mechanisms [114], allowing visual fea-
tures to be contextualized with the associated text. The language-guided query
selection phase uses textual information to guide query initialization, similar to
the process in DINO, and extracts relevant features from the text. A similarity
matrix is calculated between image and textual features, allowing the model to
focus on the most relevant regions of the image by selecting the top queries based
on similarity scores. The final phase, cross-modality decoding, applies attention
mechanisms to both image and text features to refine query representations. This
improves the accuracy of object detection and classification. In this thesis, ad-
dressing the ObjectNav problem requires the robot to detect an arbitrary object
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Figure 3.5: Grounding DINO is a transformer-based model designed for open vocabulary object
detection. It utilizes vision and text encoders to detect objects based on natural language
prompts. The model employs a cross-attention mechanism to fuse image features with text
embeddings, enabling precise, prompt-based object localization. Courtesy: Liu et al.[69]

based on textual descriptions. The task is executed successfully if the robot de-
tects the object using natural language descriptions and navigates to it. Given
Grounding DINO’s state-of-the-art performance in open vocabulary object detec-
tion, which enables detection beyond predefined object categories, we use it as
the open vocabulary object detector within our pipeline.

3.3 Grid Maps
While searching for objects, a robot needs to build and update an internal rep-
resentation of the environment from its observations. This allows it to track
explored areas, identify potential target locations, and plan paths. Grid maps
are such a representation which represent information about the environment by
discretizing it into so-called grid cells. Each grid cell can store geometric or se-
mantic information about its area. A popular variant of grid maps are occupancy
grid maps, which represent occupancy information in 2D, an example of which is
illustrated in Figure 3.6. In our active perception framework, we use grid maps
extensively to store occupancy and semantic data. In this section, we present the
original formulation of grid maps by Moravec and Elfes [76].
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Figure 3.6: Example of an occupancy grid map. Courtesy: Cyrill Stachniss [110]

Grid maps create a rigid, equi-distant grid of equally sized cells. We assume
that cells are spatially independent of each other and the environment is static.
Further, we assume known poses of the robot x1:t where the subscript denotes a
sequence of poses until time t. The sequence of sensor measurements z1:t from
those poses is collected with noisy sensors. Each grid cell c of a grid map stores
a probability p(c) of its state which can signify different contexts depending on
the type of map used. For instance, in occupancy grid mapping, it is the prob-
ability of the cell being occupied or free whereas in semantic grid mapping, this
probability would be the semantic relevance of the cell. These assumptions allow
us to formulate the probability of a map m as the product over probabilities of
individual cells as:

p(m) =
∏
c∈m

p(c). (3.2)

The probability of individual cells c ∈ m given the measurements z1:t collected
by the robot at poses x1:t can be computed using the Bayes rule

p(c | x1:t, z1:t) =
p(zt | c, x1:t−1, z1:t−1) p(c | x1:t, z1:t−1)

p(zt | x1:t, z1:t−1)
. (3.3)

The environment is assumed to be Markovian. i.e zt does not depend on x1:t−1

and z1:t−1, leading to

p(c | x1:t, z1:t) =
p(zt | c, xt) p(c | x1:t, z1:t−1)

p(zt | x1:t, z1:t−1)
. (3.4)
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We apply Bayes’ rule for the term p(zt | c, xt) in Equation (3.4) and obtain

p(zt | c, xt) =
p(c | xt, zt) p(zt | xt)

p(c | xt)
. (3.5)

We can combine Equation (3.5) and Equation (3.4). In addition to that we can
assume that xt does not carry any information about c if there is no observation zt.
i.e., the state of the map changes only when there is an observation from the robot.
Following this assumption, we can write

p(c | x1:t, z1:t) =
p(c | xt, zt) p(zt | xt) p(c | x1:t−1, z1:t−1)

p(c) p(zt | x1:t, z1:t−1)
. (3.6)

In an occupancy grid map, each cell of the environment is assumed to be
in only one of two possible states: free or occupied. We therefore make use of
complement and estimate the probability of cell c being in an opposite state to
the one estimated in Equation (3.6)

p(¬c | x1:t, z1:t) =
p(¬c | xt, zt) p(zt | xt) p(¬c | x1:t−1, z1:t−1)

p(¬c) p(zt | x1:t, z1:t−1)
. (3.7)

We divide Equation (3.6) by Equation (3.7) and obtain

p(c | x1:t, z1:t)

p(¬c | x1:t, z1:t)
=

p(c | xt, zt) p(¬c) p(zt | x1:t, z1:t−1)

p(¬c | xt, zt) p(c) p(zt | x1:t, z1:t−1)
. (3.8)

Finally, we use the fact that p(¬c) = 1− p(c) which yields

p(c | x1:t, z1:t)

1− p(c | x1:t, z1:t)
=

p(c | xt, zt)

1− p(c | xt, zt)
· 1− p(c)

p(c)
· p(c | x1:t−1, z1:t−1)

1− p(c | x1:t−1, z1:t−1)
. (3.9)

Given all of the above equations, we can specify the full occupancy update formula
as follows:

p(c | x1:t, z1:t) =[
1 +

1− p(c | xt, zt)

p(c | xt, zt)
· p(c)

1− p(c)
· 1− p(c | x1:t−1, z1:t−1)

p(c | x1:t−1, z1:t−1)

]−1

. (3.10)

Equation (3.10) tells us how to update our belief p(c | x1:t, z1:t) about the occu-
pancy probability of a grid cell given sensory input. In practice, one often assumes
that the occupancy prior is 0.5 for all cells, so that p(c)

1−p(c)
can be removed from

the equation.
In this section, we will skip the computation of the occupancy probability

p(c | xt, zt) of a grid cell given a single observation zt and the corresponding pose
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xt of the robot. This quantity depends on the sensor of the robot and has to be
defined manually for each type of sensor. For more information on grid maps we
refer the reader to the original version of the Moravec and Elfes paper [77] and
the well written theses on this topic [110, 9].

In our approach for ObjectNav, we maintain two maps. We utilize the stan-
dard occupancy grid mapping approach with known poses to maintain an obstacle
map of the environment. In addition, for the second map, we extend the binary
occupancy grid map approach to store continuous values of cosine similarity from
vision language models and update them using a Bayesian formulation.

3.4 Planning with Monte Carlo Tree Search
Path planning is a fundamental component of any robot navigation pipeline and is
one of the major focuses of this thesis. Robotic path planning can be formulated
as a sequential decision-making problem where at each step, a decision has to be
made about where to go next. If a robot has a map of the environment and uses
it to plan, the environment is termed as being “fully observable”. Such sequential
decision-making problems in fully observable environments can be modeled as
a Markov Decision Process. A Markov Decision Process (MDP) [98] has four
components:

• S: A set of states, with the initial state defined as s0.

• A: A set of actions, with an action selected from this set as a ∈ A

• T (s, a, s′): A transition model, which defines the probability of arriving at
state s′ if action a is taken in state s

• R(s, a, s′): A reward function

Decisions are modeled as state-action pairs in which each next state s′ depends
on the current state s and action taken a. A policy is a mapping from states to ac-
tions, specifying the action that would be taken from each state in S. Finding the
optimal policy π that yields the maximum expected reward is the goal of decision-
making in problems formulated as a MDP. Among the many approaches to solve
MDPs, Monte Carlo Tree Search (MCTS) is a simple and powerful approach for
determining the optimal policy in complex planning problems. MCTS has had
a profound impact on decision-making and planning problems, such as building
bots for strategy games like Chess and Go [107], planning and other decision-
making problems. This capability extends to applications like robot navigation.
MCTS is based on two key principles. First, the true value of an action can
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Algorithm 1 Monte Carlo Tree Search (MCTS)
Input: Root node s0
Output: Action from root node
while iterations not finished do

v ← Select(s0) ▷ Selection phase
if v is not a terminal state then

v′ ← Expand(v) ▷ Expansion phase
∆← Simulate(v′) ▷ Simulation phase

else
∆← Simulate(v) ▷ Simulation from the terminal state

Backpropagate(v,∆) ▷ Backpropagation phase
return best child of s0 based on visit count

Figure 3.7: A step-by-step visual guide to the four phases of MCTS: selection, expansion,
simulation, and backpropagation. Starting at the root, the algorithm selects child nodes using
the tree policy, expands by adding new moves as nodes, simulates outcomes through random
rollouts, and backpropagates results back up the tree. Courtesy: Duguépéroux et al. [26]

be approximated through simulations. Second, these approximations can be ef-
ficiently leveraged to adjust the policy towards a best-first strategy [12]. The
algorithm incrementally constructs a search tree by randomly sampling from the
decision space, guided by the outcomes of previous explorations within the tree.
This tree serves as a tool for estimating the value of different moves, with the
estimates, especially for the most promising moves, becoming more accurate as
the tree grows. The MCTS algorithm can be divided into four key phases:

• Selection: From the root node, a tree policy is recursively applied to traverse
the tree. The tree policy selects the child node that maximizes the expected
cumulative reward.

• Expansion: When leaf node is reached, one or more child nodes are added
to the tree, according to the available actions.
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• Simulation: A Monte-Carlo simulation is run by sampling random actions
from the given non-terminal node to a terminal state to produce a value
estimate. This is also known as the rollout policy.

• Backpropagation: The results of the simulation are propagated back up the
tree through the selected nodes to update their statistics.

These steps are summarized as pseudocode in Algorithm 1. At each selection
step in the tree search, one is faced with a dilemma, to choose an action a ∈ A

in order to maximize the expected cumulative reward by consistently taking the
optimal action. Since the distribution of rewards over the planning horizon is
unknown, potential rewards must be estimated based on collected observations.
This is the so-called “exploration-exploitation dilemma”. The MCTS needs to
balance the exploitation of the action currently believed to be optimal, i.e, yields
the highest immediate reward, with the exploration of other actions that cur-
rently appear sub-optimal but may be superior in the long run. In MCTS, the
balance between exploration and exploitation is achieved using a tree policy ap-
proximating the true reward of actions that can be taken from the current state.
One possible tree policy is the Upper Confidence Bound for Trees (UCT) de-
veloped by Kocsis and Szepesvári [55]. In deciding which child node to select,
the value of each child node is estimated through multiple iterations i of Monte
Carlo simulations and yields rewards Ri,1, Ri,2, . . . , which are independently and
identically distributed. Hence, these rewards can be considered as corresponding
to random variables with unknown distributions having an unknown expectation
Qi. The cumulative sum of these expected rewards over the planning horizon is
the quantity to be maximized by the tree search policy. In UCT, a child node i

is selected to maximize:

UCT (i) =
Qi

ni

+ Ce ·
√

lnN
ni

, (3.11)

where N is the number of times the parent node of the selected child has been
visited, ni the number of times child i has been visited and Ce > 0 is known as the
exploration constant that is used to control the amount of exploration. There is a
crucial balance between the first (exploitation) and second (exploration) terms in
the UCB equation. With each visit to a node, the denominator of the exploration
term increases, reducing its contribution to the overall value. Conversely, when
another child of the parent node is visited, the numerator in the exploration term
increases, which raises the exploration values of the unvisited sibling nodes. The
algorithm also ensures that all children of a node are evaluated at least once
before expansion, as a visit count of ni = 0 results in a UCT value of ∞. Setting
the value of the exploration constant in UCT is non-trivial for arbitrary rewards.
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For rewards in the range [0, 1], Kocsis and Szepesvári suggest that the value of
1√
2
should be used.
MCTS is a simple, scalable, and domain-independent algorithm for sequen-

tial decision-making that can be flexibly adapted to various problems formulated
as MDPs. However, the algorithm has some drawbacks, particularly its high
memory demands and the large number of iterations required to converge to
an optimal policy. These factors can make MCTS challenging to implement in
time-sensitive applications. Nonetheless, MCTS is an anytime algorithm, mean-
ing that increased computational power generally results in better performance.
Since robot navigation in household environments is not as time-critical as do-
mains like autonomous driving, where split-second decisions are crucial to avoid
severe damage, we deem it suitable to use MCTS for our problem. We adapt the
MCTS algorithm with UCT tree policies to build the path planner in our Object-
Nav approach. As a non-myopic method, MCTS generally performs better than
greedy planning strategies, especially in exploration tasks where future rewards
need to be considered for effective navigation. To ensure compute-efficient imple-
mentation, problem-specific modifications and integration with our grid mapping
system were made, allowing the planner to function effectively within our pipeline.
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Chapter 4

Approach

In this chapter, we introduce our approach to the ObjectNav problem. Our
approach involves modular components for perception, mapping, explo-
ration, and planning. Our method aims to equip a robot with the capa-
bility to find a user-specified object in natural language (e.g., chair, wallet,

clothes) within an unknown 3D environment. This natural language description
of the object to find, is referred to as the “target object”. Given the uncertainty of
the initially unknown environment, exploration becomes essential, as the robot
must actively search through uncharted spaces to identify areas most likely to
contain the target object. In our pipeline, we assume that the robot is equipped
with an RGB-D camera and pose information provided by a GPS+Compass sen-
sor. The sensors are assumed to be noise-free, in accordance to the assumptions
of the ObjectNav problem defined in Section 3.1. As illustrated in Figure 4.1,
our pipeline consists of two modules: “object detection” and “active semantic
exploration”. At each time step, images from the camera are processed through
the object detection module to detect the target object within the current RGB
image. If detected, the robot directly navigates to the object using point-goal
navigation, as outlined in Section 4.1. However, when the object is not detected
given the current sensor observations, the system transitions to the active seman-
tic exploration module, which constitutes the main contribution of this thesis.

Our exploration strategy is designed to systematically search unknown en-
vironments for a target object by performing goal-directed exploration guided
towards semantically relevant regions in the environment. We define a semanti-
cally relevant region as an area with a high likelihood of containing the target
object. For instance, if the target object is a “cup,” then a semantically relevant
region in a household might be the kitchen. In order to estimate semantic rele-
vance, we treat VLMs as a deep learning-based sensor which performs image-text
matching between the images captured by the robot and the target object descrip-
tion. Realizing the inherent uncertainty in estimating semantic relevance from
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Figure 4.1: Our ObjectNav approach consists of two main components: object detection and
active semantic exploration. If the target object is detected in the robot’s immediate frame, the
robot navigates directly to it. Otherwise, it explores the environment using a planning strategy
guided by an uncertainty-aware context map. This map incorporates semantic cues and their
associated uncertainty, derived from image-text matching, to relate the robot’s observations to
the target object effectively.

VLMs, we develop a probabilistic sensor model, detailed in Section 4.2. Since
VLMs take both an image and text as input, they estimate the likelihood of an
object’s presence in an image.

As different images may cover the same or overlapping regions, we construct
a metric-semantic representation of the environment, or “context map”, to inte-
grate semantic relevance observed from various viewpoints captured over multiple
time steps and continuously updated through probabilistic updates. The context
map is defined as MC : m→ [0, 1]H×W , over a grid lattice m with H×W spatially
independent cells, each cell of the map represents semantic relevance, which we
model as a Gaussian distribution, as explained in Section 4.3. In addition, we
develop an “obstacle map”, and a “view map”. The obstacle map MO is an oc-
cupancy grid map representation used to differentiate between free and occupied
regions in the environment. It is continuously updated with sensor data to reflect
changes in the environment and successively updated using probabilistic updates,
as previously explained in Section 3.3. The obstacle map MO : m→ {0, 1}H×W ,
is also defined over a grid lattice m with H ×W spatially independent cells. Our
specific occupancy grid map representation is a map of occupancy probabilities
created from depth camera images and closely follows the approach of [128].
Additionally, the view map MV → NH×W , is maintained to track the frequency
of regions observed in the environment and is non-probabilistic. This framework
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Figure 4.2: We incorporate YOLOv7 [116] and Grounding DINO [69] object detection models
for enabling object detection in our pipeline. MobileSAM is used to segment the target object
in the depth camera images. This example shows YOLOv7 detecting the target object “chair”
in the RGB image (left) and MobileSAM segmenting the detected objects in the depth frame
to determine a waypoint for reaching the object (right).

enables the robot to assess contextual relevance across regions, prioritizing ex-
ploration in areas with a higher probability of finding the target object while
accounting for uncertainty.

We develop two planning algorithms, informative frontier-based exploration
(I-FBE) and informative monte carlo tree search (I-MCTS) which explore the
environment based on our maps, as described in Section 4.4.2. Both planners
serve as high-level strategies that balance the trade-off between navigating to high
relevance regions on the context map (exploitation) and exploring high variance
regions. Point-goal navigation acts as a low-level planner to reach these regions.
This approach continuously refines the robot’s belief in the semantic relevance and
associated uncertainty of the environment, guiding its actions based on semantic
cues for uncertainty-aware exploration.

4.1 Object Detection and Point Goal Navigation
In order to succeed in the ObjectNav task, it is crucial for a robot initialized in an
environment e ∈ E at pose xw

0 to detect the goal object g specified by the natural
language description o and navigate to within c meters its pose xw

g . This neces-
sitates an object detection subsystem in our pipeline. We follow the approach
of state-of-the-art works [128] to develop the architecture of our object detection
module with the assumption that the robot has access to noiseless RGB and depth
images (Irgbt , Ideptht ) from its egocentric RGB-D camera feed as well as its pose xw

g .
Each RGB image frame received by the robot is processed through our object de-
tection module, which attempts to locate the specified object in the frame. This
module uses a hybrid combination of two object detectors. YOLOv7 [116] is
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a supervised learning-based detector trained on the MS-COCO [66] dataset for
objects that pertain to the categories of that dataset. Grounding DINO [69] is
an open vocabulary object detector capable of detecting a wide range of objects
specified by arbitrary text prompts, beyond a fixed set of predefined classes. This
combination is due to the higher accuracy of YOLOv7 for object classes contained
in MS-COCO. Once the target object is detected in the frame, we use the seg-
mentation model Mobile SAM to segment the object in the depth image. Using
the segmented part of the image, we determine a waypoint on the object for the
robot to navigate towards. To navigate to this waypoint from the current location
of the robot, we utilize the state-of-the-art point-goal navigation approach, DD-
PPO [118], which is trained on a vast variety of indoor scenes using reinforcement
learning and requires Ideptht and xw

t to navigate to the waypoint.

4.2 Sensor Model for Semantic Relevance
When humans search for an object in a new environment, they employ a seman-
tically guided strategy. Rather than exploring all areas equally, they prioritize
regions where the target object is more likely to be found. This prioritization is
based on prior knowledge that links the semantic relevance of observed regions,
which reflects how contextually appropriate a location is for finding a specific
object, to the object being sought. This usage of prior knowledge directs the
search toward the areas with the highest likelihood of success, aligning with the
principles of the theory of active perception [2, 80]. For example, when searching
for an apple, a person is more likely to explore a semantically relevant area, such
as the kitchen, while de-prioritizing less relevant locations, such as the bathroom.

Inspired by human behavior, recent ObjectNav approaches have utilized VLMs
to enable semantically informed exploration [128, 30, 52] by performing image-
text matching. As mentioned in Section 3.2, VLMs have the ability to associate
contextual information from both text and images, positioning them as a pow-
erful tool for estimating semantic relevance. VLMs calculate cosine similarity Si

between an image Ii and a text prompt pi which serve as a realization of this
semantic relevance. However, standardized methods for evaluating their level
of contextual comprehension, remain underdeveloped. While VLMs can encode
contextually rich associations, the internal representation of semantic concepts
within their transformer-based text and image encoders are largely opaque. This
limitation of interpretability underscores their “black box” nature. The architec-
ture of VLMs, which typically relies on transformer-based encoders, exhibits high
sensitivity to minor variations in input, making consistent performance across di-
verse tasks challenging to guarantee. This also reflects that there is inherent
uncertainty in estimating the semantic relevance for a region in the environment
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through VLMs, as different text prompts, even if contextually the same, can
lead to different cosine similarities. Similarly, viewpoints changes during image
acquisition or lighting conditions can result in different cosine similarities.

This motivates us to treat cosine similarity Si(Ii, Pi) as an uncertain sensor
measurement of the true semantic relevance S of some region in space in the
context of the target object as specified by o. We develop an uncertainty quan-
tification scheme in the following subsections, we formalize the uncertainty in
image-text matching in Section 4.2.1. Further, we show how uncertainty could
be quantified for context due to prompts in Section 4.2.2 and due to viewpoint
changes, as detailed in Section 4.2.3.

4.2.1 Uncertainty in Image-Text Matching
As detailed in Section 3.2, VLMs can perform image-text matching, i.e, they can
quantify the semantic relevance of an image Ii ∈ I and a text prompt pi ∈ P
by computing the cosine similarity Si between their high dimensional feature
embeddings lIi and lpi respectively, which is deterministic. However, research
suggests that there is a semantic gap between visual and textual representations
in VLMs. The semantic gap occurs due to the fact that there can be multiple
prompts pi ∈ P̂ which may be linguistically different but convey the same context
with respect to Ii. Here, P̂ denotes the set of prompts relevant to Ii, with P̂ ⊊ P ,
where P is the infinite set of all possible natural language descriptions. The
semantic gap introduces uncertainty in estimating the true semantic relevance S

of an image and it can only be estimated by realizations of cosine similarities Si

for different prompts, even if these prompts convey the same context. We argue
that due to the semantic gap, cosine similarity can’t be treated as a deterministic
function for semantic relevance and is only an uncertain realization of the true
semantic relevance between Ii and pi. Our proposed exploration pipeline expands
on this concept by quantifying the noise or uncertainties in these realizations
employing VLMs to estimate the semantic relevance of images captured by the
robot in household environments to a target object. This process assesses the
potential utility of the observed area for locating the object, facilitating more
efficient and context-aware exploration of the environment.

There has been a growing trend in the use of VLMs in robotics [30, 128], how-
ever research examining the impact of data uncertainties such as variations in
prompt phrasing on robotics tasks remains sparse. In the context of the Object-
Nav problem, VLFM [128] is one of the first studies to leverage cosine similarities
from VLMs for semantic navigation. This approach employs the BLIP-2 model
for image-text matching using the current RGB frame and uses a fixed prompt
format “Seems like there is a target_object ahead”, where the target_object
is specified based on user requests. BLIP-2 is impacted by the issues of data
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uncertainty, as evidenced by empirical studies demonstrating that prompt selec-
tion significantly influences model outputs [20, 136, 132]. Given the scale of such
tasks like ObjectNav where numerous object types and spatial variations must
be accounted for, prompt tuning becomes impractical. Additionally, optimizing
prompts on a test dataset may risk overfitting, thereby limiting generalizabil-
ity to unfamiliar environments. Motivated by these challenges, we investigate
data uncertainty within VLMs by examining how variations in prompts affect
the encoded context or cosine similarity metrics. We propose modeling this vari-
ability as a random variable in a probabilistic framework, aiming to leverage
this uncertainty to enhance navigation performance. Subtle shifts in prompt
wording, image perspectives, or image augmentations can cause substantial fluc-
tuations in performance due to the associations learned during training. This
sensitivity to input perturbations has been extensively documented in the litera-
ture [136, 135, 104, 120, 53] which highlight the challenges of achieving consistent
performance across varied contexts. As a result, prompt engineering which is
tuning word choices to optimize output, remains a common but time-intensive
practice. Nonetheless, prompt engineering is typically task-specific, aiming to
maximize model performance for a narrow focus. Extending this approach to
numerous general downstream tasks, particularly in robotics, becomes infeasible
due to the substantial time and computational resources required.

4.2.2 Extracting Context Uncertainty

Given two vectors lIi and lpi representing, image and text embeddings for image
Ii ∈ I and pi ∈ P respectively. The cosine similarity S(lIi , lpi) is calculated as
previously defined in Equation (3.1):

Si(lIi , lpi) = cos(θli) =
lIi · lpi
∥lIi∥∥lpi∥

,

where θl represents the angle between Ii and pi in the high-dimensional fea-
ture space. However, due to the limited interpretability of VLMs’ internal mecha-
nisms, the exact structure of this space remains difficult to understand, and cosine
similarity scores exhibit variability, due to factors such as prompt variations. To
capture this variability, we model semantic relevance as a random variable S

with a probability distribution that reflects the uncertainty in cosine similarity
interpretations. For instance, if we assume S follows a Gaussian distribution, we
can express it as:

P (S) ∼ N (µ, σ2) , (4.1)
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where µ is the mean similarity score and σ2 is the variance. The probability
density function (PDF) of this Gaussian distribution is given by:

PDF (Si) =
1√
2πσ2

exp
(
−(Si − µ)2

2σ2

)
. (4.2)

This formula captures the likelihood of different cosine similarity scores, re-
flecting the mean and variance of semantic similarity values. This probabilistic
treatment of S enables cosine similarity to function not merely as a metric but as
an indirect measure of likelihood, steering exploration toward regions with higher
semantic relevance. By formalizing similarity as a random variable, we encapsu-
late the uncertainty in semantic interpretations, thus enabling cosine similarity to
guide exploration probabilistically rather than deterministically. This approach
enhances VLM-driven exploration by focusing on regions with statistically signif-
icant semantic relevance, which can then be used to update a probabilistic map
which encodes semantic relevance, referred to as context map.

To construct a robust likelihood model, we need a set of cosine similarity
estimates across different prompt variations. To achieve this, we use the large
language model GPT-4 [78] to generate diverse prompts that capture the target
context. We provide GPT-4 with a few initial examples that vary in phrasing but
convey consistent context, such as “There is a target_object in the vicinity”
and “A target_object could be ahead”. GPT-4 then generates multiple similar
prompts to explore different expressions of the target context. This approach
allows us to systematically evaluate the impact of prompt variations on perfor-
mance of VLFM on ObjectNav, as presented in Section 5.2.1. Our approach
employs an ensemble of five selected prompts from this set, allowing us to cap-
ture a range of semantic interpretations. By calculating the mean and variance
of cosine similarity scores for each prompt with the current image frame, we gain
insights into the variability of S. Formally, we define the prompt ensemble as
a set of prompts P which consists of N unique prompts p1, p2, . . . , pN ∈ P . We
denote the image from the robot at the current timestep t as Irgb

t . Both the image
and each prompt are encoded through the VLM, resulting in corresponding em-
beddings l

Irgb
t

for the image and lpi for each prompt pi ∈ P . The cosine similarity
between the image embedding and a prompt embedding is denoted by Si, which
for N prompts would result in N cosine similarities. This is shown for the image
and a single prompt pi at timestep t as:

Si(lIrgb
t

, lpi) =
l
Irgb
t
· lpi

∥l
Irgb
t
∥∥lpi∥

. (4.3)

The mean µ of of S can be approximated as a mean of the cosine similarity
scores:
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Figure 4.3: In this example, we show that the Quantile-Quantile (QQ) plot of 100 cosine
similarity values which are generated from 100 unique prompts around the target object name
“printer”, lie on a Gaussian distribution.

µ̂S =
1

N

N∑
i=1

Si . (4.4)

The variance σ2 of S can be approximated as a variance σ̂2 of the cosine
similarity scores:

σ̂2
S =

1

N

N∑
i=1

(Si − µ̂)2 . (4.5)

Thus, Equation (4.4) and Equation (4.5) can be used to approximate the
random variable S ≈ Ŝ as P (Ŝ) ∼ N (µ̂, σ̂2) calculated from the prompt ensemble.

To further support our Gaussian assumption for semantic relevance, we an-
alyzed the cosine similarity from the BLIP-2 VLM across various rgb images
from a dataset. We used prompt ensembles of sizes ranging from 10 to 100.
This approach allowed us to assess the consistency of similarity distributions un-
der prompt variation. For example, when analyzing an office image without a
printer, we tested prompts such as “is there a printer ahead” or “printer in the
vicinity.” Our analysis, as shown in Figure 4.3, indicates that cosine similarity
values, when aggregated over prompt ensembles, approximate a Gaussian distri-
bution. This result validates that Ŝ is normally distributed and can be used to
compute posterior probability for the subsequent context map creation process
that we present in Section 4.3.

4.2.3 Extracting Viewpoint Uncertainty
In robotic perception, accurately representing viewpoint uncertainty is essential
for effective decision-making, as different parts of the robot’s field of view con-
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tribute unevenly to semantic relevance. When a VLM generates a cosine similar-
ity score for a given text and image pair, this score reflects the semantic relevance
across the entire field of view (FOV). However, treating all regions equally can
lead to inaccuracies, as some areas may be more relevant to the target than oth-
ers. Viewpoint uncertainty arises because the robot’s view on objects or regions
differs in clarity, with objects in the central area along the optical axis being fully
observed and peripheral regions may be unclear or only partially visible.

For instance, if the goal is to find a cup and the region along the optical axis
shows an unrelated object, such as a toilet, the similarity score for the entire FOV
may be lowered. This could cause the system to overlook potentially relevant
areas at the peripheries, such as the entrance to a kitchen that might offer clues
about the target’s location, as illustrated in Figure 4.4. If in the direct line of sight
is an unrelated region, then even if semantically related regions are viewed near
the periphery, they tend to receive lower scores due to reduced clarity, partial
views and less direct alignment with the robot’s viewpoint. While the same
regions, when seen directly along the optical axis, are assigned higher scores
because of increased clarity and semantic confidence while areas along the optical
axis. As a result, uncertainty rises as the object shifts from the optical axis to
the edges of the FOV, reflecting decreasing confidence in observations.

Current methods, such as VLFM, adjust cosine similarity values based on a
pixel’s distance from the optical axis, as shown in Equation (4.6). With higher
confidence for pixels along the optical axis and lower confidence for peripheral
pixels. “The confidence of a pixel in the robot’s FOV is determined based on its
location relative to the optical axis. Where, θ is the angle between the pixel and
the optical axis and θfov is the horizontal FOV of the robot’s camera” [128]. For
an image Irgb, it is defined as:

C(θ) = cos2
(
2 · θ · π
θfov

)
, (4.6)

where θ is the angle between the pixel and the optical axis, and θfov is the
horizontal FOV of the robot’s camera.

However, in the case of VLFM, this adjustment is only applied when a grid cell
has a value from a previous observation, potentially leaving newly observed areas
with inaccurate confidence levels. Additionally, their approach includes a decision
threshold that prevents updates if the confidence is too low. These simplifications
can affect map quality and reduce the effectiveness of exploration. To overcome
these limitations, we propose an approach that applies confidence adjustments
consistently, regardless of whether a region has been observed previously. Instead
of directly using the confidence score, we use it as a measure of variance, treating
viewpoint uncertainty as the opposite of confidence. This approach assigns a
variance close to 0 for regions along the optical axis (high confidence) and a
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Figure 4.4: In this example, the robot needs to find the goal abject represented by a yellow
star. To go towards the object, it needs to explore frontiers. However, the current field of view
(FOV) looks at an object (denoted by red crosses) that is dissimilar to the target object. If
equal weighting was used, all of the FOV gets the same cosine similarity assigned. However, in
our approach, we will have a higher variance for the edges of the FOV, which would increase
the uncertainty for those cells on the map.

variance of 1 for regions at the periphery (low confidence). This allows us to
incorporate viewpoint uncertainty into the sensor model as:

σ2
v(θ) = 1− C(θ) , (4.7)

where σ2
v is the viewpoint uncertainty. While this function is not truly a vari-

ance in the statistical sense, as it does not satisfy the mathematical properties of
the second moment, we incorporate it in our framework to show the variability
of viewpoints as an additional uncertainty in the estimation of S. We integrate
the two sources of uncertainties by adding the viewpoint uncertainty as an inde-
pendent variance into our context uncertainty formulation from Equation (4.5).
We combine these within a probabilistic framework. Viewpoint uncertainty is
then incorporated as an additional variance component. The total uncertainty
for each observation is given by:

σ̂2
S = σ̂2

S + σ2
v(θ) , (4.8)

where σ̂S
2 (left) is redefined as the total variance of the estimated semantic

relevance Ŝ due to the combination of context and viewpoint uncertainties to
simplify notation. Here, σ̂S

2 (right) represents the variance due to context uncer-
tainty and σ2

v accounts for viewpoint uncertainty. σ̂S
2 captures the uncertainty
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in semantic relevance from each image observation Irgb and is used to update the
probability distribution of each grid cell in the our context map, resulting in a
nuanced representation that reflects the reliability of the semantic relevance of
observed regions within the robot’s environment. This map will guide the robot’s
exploration by highlighting regions with higher potential for locating the target
object based on the combined semantic and uncertainty information. By account-
ing for both context and viewpoint uncertainty during the mapping process, we
aim to create more accurate and adaptive map updates that better inform the
robot’s decision-making as it navigates and explores.

4.3 Uncertainty-Infused Context Map
Traditional grid-based mapping techniques, such as occupancy grid maps, repre-
sent each grid cell as a binary random variable, indicating whether it is occupied,
free, or unknown. These approaches utilize a prior probability distribution for
each cell and apply probabilistic updates to iteratively refine the map’s repre-
sentation of the environment. Beyond spatial data, grid maps can incorporate
semantic information, such as features extracted from visual observations. De-
spite incorporating semantic data, VLFM lacks a probabilistic framework for
map updates. Instead, it maintains a point estimate of cosine similarities over
the grid cells. Unlike probabilistic approaches, there is no prior probability de-
fined over the grid cells. However if a particular grid cell already has a cosine
similarity value associated with it from a previous observation and the grid cells
are observed again and receive a new cosine similarity value, they are updated via
weighted averaging. Additionally, the approach uses hand-tuned decision thresh-
olds to restrict updates, such as discarding new observations that fall below a
specified confidence level. These limitations lead to missed opportunities for in-
corporating valuable information and hinder the system’s ability to rigorously
account for uncertainty in the mapping process.

In contrast, a probabilistic mapping framework offers a more theoretically
principled approach by explicitly incorporating uncertainty into the mapping pro-
cess. This allows the map to reflect the reliability of prior data and its uncertainty,
leading to a more accurate representation of the environment without using any
hand-tuned parameters like the decision threshold of VLFM. To address these
limitations, we propose an uncertainty-infused context map that integrates both
context and viewpoint uncertainties. This approach enables a simpler and more
comprehensive mapping framework, capturing semantic relevance and its associ-
ated uncertainty within a probabilistic framework.

Building on these insights, we propose a metric-semantic probabilistic map
representation that incorporates contextual information using Bayesian updates
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called context map. MC : m → [0, 1]H×W . In our context map MC , each grid
cell c ∈ Mc is treated as a random variable, consistent with the principles of
probabilistic grid mapping, as previously discussed in Section 3.3. Our map
representation models each grid cell as a random variable that reflects the se-
mantic relevance S , bounded in the interval [0, 1]. This reflects the range of
both expected semantic relevance and uncertainty values which are also bounded
in [0, 1]. The Bayesian probability update from Equation (3.4) is now redefined
to accommodate this probabilistic framework:

p(c | x1:t, z1:t) =
p(zt | c, xt) p(c | x1:t, z1:t−1)

p(zt | x1:t, z1:t−1) ,
. (4.9)

where c is a single grid cell, x1:t is the set of poses of the robot till time t

and z1:t is the set of observations of the robot till time t. The observations of
the robot in our approach are RGB images Irgbt The term p(zt | m,xt) represents
the likelihood obtained directly from the uncertainty estimation process. In our
approach, the likelihood is assumed to be a Gaussian distribution parametrized
by the mean and variance derived from the combination of context and view-
point uncertainties, defined as µ̂S in Equation (4.4) and σ̂S

2 in Equation (4.8)
respectively. The term p(mi | x1:t, z1:t−1) represents the prior probability of the
grid cell, which we assume to also be a Gaussian distribution parametrized by
the mean µc,0 and variance σ2

c,0 at t=0. Since both the prior and likelihood are
Gaussian, the posterior distribution will also be Gaussian due to the conjugate
prior property of Gaussian distributions. The map update can thus be formulated
as a fusion of two Gaussians. This results in simple and computationally efficient
probabilistic updates, as the fusion of Gaussian distributions involves straight-
forward analytical expressions for updating the mean and variance, making the
process less resource-intensive compared to non-Gaussian updates.

We now define the measurement at time t as zt = [ ˆµS,t, ˆσ2
S,t], such that ˆµS,t

is the mean, and ˆσ2
S,t is the variance of semantic relevance at time t respectively.

Both ˆµS,t and ˆσ2
S,t are derived from the sensor model we developed in Section 4.2

and are assumed to be drawn from a Gaussian distribution. Considering the
Gaussian prior distribution over each grid cell an the likelihood, we adapt the
formulation of the Bayesian map update defined in Section 3.3 to compute the
posterior. The posterior of each grid cell on the map at time tmt, as parametrized
by the posterior mean and variance µc,t and σ2

c,t can be updated as:

µc,t =
σ2
c,t−1 µS,t + σ2

S,t µc,t−1

σ2
c,t−1 + σ2

S,t

, (4.10)
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σ2
c,t =

σ2
c,t−1 σ2

S,t

σ2
c,t−1 + σ2

S,t

. (4.11)

This probabilistic formulation enables us to update the semantic relevance of
regions in the environment in our metric-semantic context map. In our imple-
mentation, we fix the value of the prior mean µc,0 as 0.5 and the prior variance
σ2
c,0 as 0.5 at t=0. The choice of 0.5 as the initial mean reflects that the cell

is considered neither semantically relevant nor entirely irrelevant to the target
based on available information. Similarly, setting the initial variance to 0.5 indi-
cates that the initial belief is neither entirely uncertain nor completely certain. In
the next section, we detail on how our context map can be used for downstream
informative planning for exploration of semantically relevant regions.

4.4 Uncertainty-Informed Exploration
Building on the probabilistic map representation introduced in the previous sec-
tion, we now transition to uncertainty-informed exploration strategies that utilize
the map to guide the robot’s actions. The context map, which integrates both
context and viewpoint uncertainties, provides a continuously updated estimate
of the semantic relevance and uncertainty associated with different regions in
the environment. This rich information allows for more effective planning and
decision-making by enabling the robot to prioritize areas with high potential for
discovering the target object while accounting for uncertainty.

Uncertainty-informed exploration strategies aim to balance the trade-off be-
tween selecting regions with high estimated value based on the current map (ex-
ploitation) and exploring regions with greater uncertainty to gain additional infor-
mation (exploration) [81, 100, 111, 99]. By leveraging the probabilistic framework,
these strategies dynamically adjust the robot’s actions in response to evolving con-
ditions and new observations. This section introduces two uncertainty-informed
planning approaches designed to enhance the robot’s efficiency and effectiveness
in object search tasks. The first approach is uncertainty-informed frontier ex-
ploration, a myopic strategy that performs single-step utility maximization by
weighing the mean and uncertainty of map frontiers, using reward functions to
select the most promising frontiers for further investigation, as outlined in Sec-
tion 4.4.1. The second approach is uncertainty-informed monte carlo tree search
(MCTS), a non-myopic strategy that formulates the navigation task as a MDP
and utilizes MCTS make sequential decisions over multiple future actions by
evaluating the semantic relevance and uncertainty of grid cells on the map, to
optimize long-term gains. This approach is described in Section 4.4.2
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4.4.1 Uncertainty-Informed Frontier Exploration
In uncertainty-informed frontier-based exploration, we leverage our maps to nav-
igate to frontiers, which are regions on the periphery of explored and unexplored
space. Frontiers are derived from the occupancy grid map, represented by the 2D
position of the grid cell at the center of each frontier in the obstacle map MO:

Let xfi = (xfi , yfi) represent the 2D position of the grid cell at the center of
frontier fi, where i = 1, 2, . . . , N denotes each individual frontier. The proba-
bility of contextual relevance of each frontier fi is characterized by the expected
semantic relevance µfi and variance σ2

fi
from the context map, as:

µfi = µ(xfi) , (4.12)

σ2
fi
= σ2(xfi) . (4.13)

Here, µ(xfi) and σ2(xfi) represent the expected contextual relevance and the
associated uncertainty (variance) for each frontier position xfi . This probabilistic
representation captures the uncertainty associated with the contextual relevance
of each frontier with respect to the target object. To guide the robot’s exploration,
we use two reward functions: expected improvement (EI) [48] and gaussian pro-
cess upper confidence bound (GP-UCB) [108], applied as exploration policies
I-FBE1 as detailed in Section 4.4.1.1 and I-FBE2 as explained in Section 4.4.1.2,
respectively. By considering both contextual relevance and uncertainty, these
policies enable a more informed search for the target object.

4.4.1.1 I-FBE1

In frontier exploration, the objective is to select frontiers on a map that offer the
highest potential for finding the target object. This task can be framed within
the context of Bayesian optimization, where the probabilistic context map serves
as the surrogate model which quantifies the uncertainty of contextual relevance
of regions on the map. In Bayesian optimization, acquisition functions are used
to approximate the true black-box function, in this case, the contextual relevance
across regions on the map.

By estimating the potential improvement over the current best observation, we
maximize an acquisition function. Each frontier pose xfi is treated as a candidate
to explore, and we use the expected improvement acquisition function to evaluate
the potential reward of visiting each frontier. The expected improvement [48]
measures the expected improvement over the current highest observed mean µbest

among the frontiers on the map, guiding the robot towards frontiers that are likely
to provide the most informative observations. Given N frontiers at a timestep t,
the reward for a frontier using expected improvement can be expressed as:
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EI(f) = (µf − µbest) · Φ
(
µf − µbest

σf

)
+ σf · ϕ

(
µf − µbest

σf

)
, (4.14)

where µbest is the highest mean among the frontiers on the map at timestep t.
Φ and ϕ are the cumulative distribution function and the probability density
function of the standard normal distribution. The term µf−µbest

σf
represents the

improvement normalized by the uncertainty at the frontier. In the I-FBE1 explo-
ration policy, the EI criterion is used as a reward function to prioritize frontiers
that not only have a high estimated relevance but also hold significant uncer-
tainty, offering a chance to discover regions with higher semantic relevance than
currently known. This approach balances the exploration-exploitation trade-off
by selecting frontiers based on the mean and uncertainty from the context map,
as defined in Equation (4.12) and Equation (4.13) respectively. Additionally,
exploring high uncertainty regions in turn, reduces the overall map uncertainty.

4.4.1.2 I-FBE2

While the expected improvement reward is a widely popular acquisition func-
tion for Bayesian optimization, its effectiveness to guide exploration by selecting
frontiers is understudied. Additionally, since the function prefers high potential
gains over the current best estimate, it is known to be greedy [84], i.e, it tends
to focus on regions where the predicted mean similarity is relatively high. In the
frontier exploration scenario, this can lead to under-exploration of areas with high
uncertainty but lower immediate expected gains, potentially causing the robot
to miss opportunities to discover more informative regions that are less certain
but could offer significant insights if explored. To address this limitation, and
model exploration of uncertain regions explicitly, we use the Gaussian Process
Upper Confidence Bound (GP-UCB) criterion [108]. GP-UCT explicitly balances
the trade-off between exploration and exploitation. The GP-UCB criterion is a
well-known acquisition function in Bayesian optimization, designed to encourage
exploration in uncertain regions while still considering predicted relevance. GP-
UCB uses this probabilistic representation to guide the robot’s exploration by
combining the predicted mean and uncertainty to evaluate each frontier’s overall
utility. GP-UCB is defined as:

GP-UCB(f) = µf +
√
βσf , (4.15)

where β is a hyperparameter that controls the trade-off between exploration
and exploitation. A higher β encourages exploration of more uncertain fron-
tiers, while a lower β focuses on exploiting frontiers with higher mean. For our
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approach, we use β = 2 as this value is suitable for balancing exploration and
exploitation when the means and uncertainties are bounded between [0,1].

By employing GP-UCB in the I-FBE2 exploration policy, we enhance the
robot’s ability to explore uncertain areas that may otherwise be neglected by EI.
This approach dynamically adjusts the exploration strategy, allowing the robot to
discover new regions with potentially high semantic relevance while also exploiting
areas with known high similarity. We evaluate the differences between these two
frontier policies through extensive experiments in Section 5.2.2.

4.4.2 Uncertainty-Informed MCTS Exploration

The task of ObjectNav requires a robot to locate a user-defined target object in
an unknown environment based on its observations. This task involves making
decisions at each time step about where to move next, thereby characterizing it
as a sequential decision-making problem. Such problems can be formulated as
MDPs, as discussed in Section 3.4. This formulation allows for the application of
various optimal policy search methods, including MCTS, which has demonstrated
success in complex decision-making tasks such as strategy games, autonomous
planning, and robot navigation [98, 107].

We formulate ObjectNav as a Markov Decision Process (MDP), defined by
the tuple (S,A, T,R), where :

• S: The set of states, which consists of the pose of the robot xw
t , the obstacle

map, the visit map and the context map.

• A: The set of actions, with an action selected from this set as a ∈ A

• T (s, a, s′): The transition model, which defines the probability of arriving
at state s′ after taking action a in state s. In our formulation, we assume
the transitions are unitary and deterministic.

• R(s, a, s′): The reward function, which provides feedback based on the
robot’s progress in locating the target object.

The objective in this MDP formulation is to find the optimal policy π, which
maps states to actions that maximize the expected cumulative reward, guiding
the robot to locate the target object efficiently. In subsequent subsections, we
elaborate on our state space, reward formulation and action space design which
then would enable the application of MCTS as defined in Section 3.4 as a planning
strategy for ObjectNav.
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Figure 4.5: This image depicts sampling of points in a 2D grid using Farthest Point Sam-
pling (FPS) [39] with (left) 500 samples, (center) 100 samples, (right) 50 samples. FPS samples
equidistant points from the grid. We use FPS in our action space design to plan with a sparse
set of states from our 2D grid map, reducing computational complexity.

4.4.2.1 Action Space Design

Defining an effective action space is crucial for the success of MCTS. In the con-
text of ObjectNav, the action space determines the possible movements an agent
can take while navigating its environment. A well-defined action space not only
facilitates efficient exploration of the environment but also ensures that the agent
can make informed decisions based on available options. In complex scenarios,
where the agent must traverse large maps, an overly expansive action space can
lead to inefficient exploration and increased computational overhead. This holds
true for our grid map representations which represent complex household envi-
ronments with grid cells.

In order to sample actions from the dense map representation, we propose an
action space utilizing the Farthest Point Sampling (FPS) [83] algorithm, specifi-
cally through an optimized method called bucket-based Farthest Point Sampling
(BFPS) [39]. BFPS samples a uniform representative set of points from the in-
put point set by finding the subset of points that are the farthest away from
each other. This approach organizes a large-scale set of points into a two-level
tree data structure with multiple buckets. BFPS operates in two main stages:
first, it constructs a KD-tree to organize the points into these buckets. Then,
during the sampling stage, it selectively processes only the necessary buckets,
which reduces memory usage and speeds up the action selection. For instance, it
filters out buckets that aren’t relevant to the current sampling, focusing only on
those that contribute to the maximum distance from reference points. BFPS has
state-of-the-art runtime speeds among FPS algorithms, thus justifying its use in
real time exploration tasks such as ObjectNav.

We utilize FPS in our action space design to sample representative positions
of states from the entire context map MC . We sample ω potential actions by
sampling ω samples from MC using BFPS, effectively reducing the action space
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Figure 4.6: Maps used in our approach: Obstacle map (left) - where obstacles are in black,
clearance distance from obstacles are in gray, explored area is in green and frontiers are denoted
in dark blue circles. The robot is denoted as a light blue circle and its trajectory in high
contrast green color. Context map (center) - denotes the map belief, where darker regions are
lower valued and brighter regions are higher valued, thus more promising to explore. View Map
(right) denotes the areas that the robot has already seen, where brighter regions have been
more frequently seen.

size by selecting representative positions throughout the map. Formally, the
action space A comprises of ω equidistantly sampled 2D positions on MC , where
ω is a hyperparameter. An action a ∈ A will be a 2D position vwa . To give an
intuition to the reader, an example of the FPS algorithm on different sample sizes
is illustrated in Figure 4.5.

4.4.2.2 State Space and Reward Design

In our formulation of ObjectNav, the state space S encapsulates the essential
information about the robot and the environment required for planning. Each
state s ∈ S represents the robot’s current understanding of the environment,
comprising the robot pose xw

t at each timestep, the obstacle map MO, context
map MC and the view map MV . On the basis of the state space and the action
space previously defined in Section 4.4.2.1, we can formulate the reward function
R(s, a, s′) for our MCTS-based exploration strategy. The action space A has
γ = |A| actions. The evaluation of the reward of each action is done via our
reward function, which comprises of three components, the semantic relevance
reward RS(v

w
a ,MC), which is computed on using the position of the action and

the context map, the exploration reward Re(v
w
a ,MO), computed on the basis of
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the position of the action and obstacle map and the revisit penalty Rr(v
w
a ,MV ),

dependent on the action position and the view map.
The context map MC is a key element in the state space, representing the

semantic relevance and uncertainty associated with different regions in the envi-
ronment, as discussed in Section 4.3. By incorporating the context map into the
state space, the planning process can focus on areas with high potential semantic
relevance, this results in the reward for semantic relevance as:

RS(v
w
a ,MC) = MC [v

w
a ] . (4.16)

The robot’s pose provides the position and orientation of the robot in the en-
vironment, which is essential for collision-free trajectory planning. The obstacle
map MO indicates occupied and free regions. In addition, providing information
about the frontiers, which represent areas that if explored, can lead to an expan-
sion in the current map. The exploration reward is modeled as a reward that
encourages the robot to explore actions near the frontiers from the obstacle map
MO, by minimizing the distance to closest frontier vwf from vwa to expand the
map, defined as:

Re(v
w
a , F ) =

1

1 +min d(vwf , v
w
a )

. (4.17)

In addition to spatial and semantic information, the state space includes a
view map MV that records the frequency with which different areas have been
explored. This component is crucial for prioritizing unseen or less frequently seen
regions, thereby reducing redundant exploration and increasing the efficiency of
the search process. By tracking exploration history, the view map ensures that
the planning algorithm directs the robot toward areas that are more likely to yield
new information, reducing the occurrence of re-views of a region. The re-view
penalty RV is defined based on the count of the grid cell from the view map at
the current robot’s pixel location:

Rr(v
w
a ,MV ) =

1

eMV vwa
| eMV vwa > 0 , (4.18)

where reward has an upper bound of 1 exponentially decreases the reward as
the frequency of the gridcell on MV increases. The combined reward function
is the weighted sum of the cosine reward and exploration bonus, scaled by the
penalty factor, is expressed as:

R = α ·RS(v
w
a ,MC) + (1− α) · (Re(v

w
a , F ) ·Rr(v

w
a ,MV )) , (4.19)
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where α denotes a hyperparameter that balances between the exploitation of
high semantic relevance values on with the exploration of novel areas by traversing
near frontiers, which may result in a extension of the map. This comprehensive
state and reward formulation enables the MCTS-based exploration strategy to
dynamically update as new observations are gathered, ensuring that the planning
algorithm operates with the most current information. The reward facilitates
informed decision-making, allowing the robot to navigate complex environments
and effectively search for the target object. By accounting for physical constraints,
semantic relevance and redundant exploration, the state space and reward design
enhances the robot’s ability to perform the ObjectNav task in a structured and
adaptive manner.
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Experiments

5.1 Experimental Setup
Our approach focuses on locating and navigating to objects in indoor environ-
ments, particularly households. To evaluate its effectiveness, we test it in realistic
3D household environments using the high-fidelity Habitat simulator [101]. Habi-
tat is a flexible, high-fidelity and high-performance 3D simulator written in C++
that offers a user-friendly Python API, supporting user-configurable robots, sen-
sors, and a variety of 3D datasets. The simulator facilitates high fidelity and
accurate environment simulations by allowing simulation on mesh representa-
tions of 3D environments including house structures and objects. Habitat has
been the standard platform for the ObjectNav Challenges [6, 123, 121], which
serve as competitions to evaluate and benchmark different approaches to solve
the task. Subsequently, it has become the de facto tool for evaluating ObjectNav
solutions, widely adopted in the research community [113, 82, 17, 6, 44, 128].

Figure 5.1: Habitat [101] is a widely adopted high-fidelity simulator that supports configurable
robots, sensors, and a wide variety of 3D datasets. These features make it an ideal platform for
evaluating our approach.
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5.1.1 Datasets

Figure 5.2: Our ObjectNav approach is evaluated in the Habitat simulator [101] on the
HM3D [86] and MP3D [16] datasets, which consist of 3D scans of multi-floor household envi-
ronments. The image shows two example environments from the HM3D dataset: a single-floor
house (left) and a multi-floor house (right). Courtesy: AI Habitat

Evaluating open-vocabulary ObjectNav pipelines is challenging because ex-
isting datasets often lack comprehensive annotations for a wide range of objects
and environments. To address this, our evaluation setup follows the criteria
used in prior ObjectNav work [128] which evaluate their approach on multiple
datasets. We evaluate our approach on the Matterport3D (MP3D) [16] and
Habitat-Matterport 3D (HM3D) [86] datasets. These datasets offer real-world re-
constructions of complex multi-floor indoor environments such as homes, offices,
and commercial areas with diverse layouts and objects, making them suitable
for evaluating ObjectNav pipelines and have been widely used by the commu-
nity [17, 72, 30].

The MP3D dataset is a foundational yet challenging resource, featuring 3D
mesh reconstructions of 90 buildings created from RGB-D scans. It includes rich
semantic annotations, supporting tasks such as object recognition and scene seg-
mentation. However, MP3D’s limited number of unique environments can restrict
the evaluation of generalization, and its 3D scans often suffer from occlusions, in-
complete data, and noise in cluttered or complex spaces, requiring approaches to
handle partial visibility and gaps. These imperfections make MP3D a challenging
testbed for navigation and scene understanding. Building on the foundation laid
by MP3D, the HM3D dataset significantly expands the scope and diversity of
3D environments. HM3D on the other hand comprises over 1,000 high-quality
reconstructions of indoor spaces, offering a much larger and more varied set of en-
vironments for training and evaluating approaches. Its greater scale addresses the
limitations of MP3D, providing diverse room layouts, object configurations, and
lighting conditions that are more representative of real-world variability. HM3D
is particularly valuable for testing generalization capabilities, as it includes more
complex and cluttered environments that closely mimic real-world challenges.
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Dataset Total Environments Total Objects Total Episodes

HM3D 20 6 2000
MP3D 11 21 2195

Table 5.1: Parameters of the HM3D and MP3D datasets for ObjectNav evaluation.

In this thesis, we evaluate our ObjectNav approach using the Habitat sim-
ulator on the validation splits of both MP3D and HM3D datasets. This split
consists of complex household environments suitable for thorough evaluation. An
overview of the comparison between the two datasets is provided in Table 5.1. The
evaluation spans 31 unique house configurations and a fixed number of episodes
per dataset, with each episode having 500 timesteps. HM3D, with 2, 000 episodes
across 20 environments, offers a larger variety of unique environments but is lim-
ited to 6 object categories from the MS-COCO dataset. Conversely, MP3D fea-
tures 2, 195 episodes across 11 environments, covering 21 object categories, out of
which 15 objects are non-COCO objects, making it a nuanced testbed due to its
broader object diversity and visual imperfections. Together, these datasets enable
a comprehensive evaluation of our ObjectNav pipeline and facilitate a balanced
assessment of its performance across varied environments and objects.

5.1.2 Evaluation Metrics
In the ObjectNav problem, several metrics are used to evaluate the performance
of agents by the research community [1, 6, 112] including “success rate” (SR),
“success weighted by path length” (SPL), “Soft SPL”, and “distance to goal”
(DTG). Each metric captures different aspects of the agent’s navigation behavior,
from basic task completion to the efficiency and quality of the path taken. The
SR is the simplest metric and measures whether the agent successfully reaches
the target object. An episode is considered successful if the agent stops within a
predefined distance of 1 meter from the target object and performs a astop action.
The success rate is calculated as the ratio of successful episodes to the total
number of episodes. While this metric evaluates basic task completion, it does
not account for the efficiency of the path taken or whether the agent’s path was
optimal. To account for path efficiency, the SPL metric is used. SPL compares
the length of the actual path taken by the agent with the shortest possible path
to the goal, which is provided as ground truth. It is defined as:

SPLi = Si ·
li

max(pi, li)
, (5.1)

where:
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• Si is the success indicator for the i-th episode, where Si = 1 if the agent
succeeds and Si = 0 otherwise.

• li is the length of the shortest path to the goal.

• pi is the length of the actual path taken by the agent.

The overall SPL score is the average over all episodes:

SPL =
1

N

N∑
i=1

SPLi . (5.2)

SPL ensures that agents are not only judged on whether they reach the goal
but also on how efficiently they do so, penalizing unnecessary deviations from
the ground truth path. However, SPL treats all failures equally, offering no dis-
tinction between agents that nearly reached the goal and those that failed to
make substantial progress. To address this limitation, Soft SPL introduces par-
tial credit for agents that make significant progress toward the goal but do not
fully reach it. Unlike standard SPL, which assigns a success score of 0 for any
failure, soft SPL rewards agents based on their proximity to the target, provid-
ing a more nuanced assessment of performance, particularly for near-successful
attempts. Lastly, the DTG metric measures how far the agent is from the target
when it stops. This metric is typically represented as the Euclidean distance be-
tween the agent’s final position and the target object. It is especially useful for
distinguishing between partial successes and complete failures, as it gives an indi-
cation of how close the agent came to reaching the target, thereby complementing
the SR, SPL, and Soft SPL metrics. We use all four of these metrics in our evalu-
ation, however most state-of-the-art approaches only compare with two metrics,
SR and SPL, which are directly related to success. Therefore when comparing
our work to the state-of-the-art ObjectNav approaches, as shown in Section 5.2.4,
we focus solely on these two metrics.

5.1.3 Baselines
To evaluate our proposed methods, we compare them against three baseline meth-
ods: a closest frontier policy, a random frontier policy, and VLFM [128], a state-
of-the-art approach for ObjectNav. The closest frontier policy directs the robot to
the closest frontier during exploration. The random frontier policy selects a ran-
dom frontier for the agent to explore at each timestep. VLFM is a semantically
informed frontier policy, leveraging cosine similarities from VLMs to select the
most suitable frontier for exploration. This approach is the most similar to ours.
It consistently outperforms other frontier-based exploration methods [30, 132, 72],
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making it a strong baseline for comparison in this study. In addition, we also
evaluate against other recent methods which tackle this problem.

5.1.4 Parameters

The MCTS planner used in this work is configured with a set of parameters op-
timized for effective exploration. Table 5.2 outlines the key parameters of our
MCTS policy. These parameters have been chosen to balance between perfor-
mance and computational complexity. Iterations are needed per decision, with a
search depth of 3, allowing it to consider up to three future action steps. The dis-
count factor is set to 1, indicating that future rewards are not discounted, giving
equal importance to all potential future outcomes. The UCT exploration constant
is set to 1/

√
(2), ensuring a balanced trade-off between exploration and exploita-

tion during node selection, thus allowing the planner to explore less-visited nodes
while also prioritizing high-reward actions.

Parameter Value

Iterations 50
Depth 3

Discount Factor 1
UCT Exploration Constant 0.707

Table 5.2: Parameters for MCTS

Table 5.3 lists the parameters related to the action space of the MCTS plan-
ner. The planner uses farthest point sampling (FPS) to select 100 sample points
per decision, enhancing the diversity of candidate actions by choosing points that
maximize the distance between them. Each node in the search tree can choose
from 3 possible actions, allowing the planner to explore multiple potential ac-
tion sequences at each step. These parameters ensure that the MCTS planner
effectively navigates complex environments by maintaining a robust exploration
strategy while being computationally feasible for real-time applications.

Parameter Value

FPS Samples 100
Action per Node 3

Reward Hyperparam α 0.5

Table 5.3: Parameters for MCTS action space design
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5.2 Performance Evaluation

5.2.1 Effect of data uncertainty on VLFM
In the experiment shown in Table 5.4, we investigate how variations in prompts
affect the performance of our baseline, VLFM. We assess the impact of data un-
certainty on the ObjectNav problem by varying text prompts. By changing the
prompts used to describe the same target object, we analyze how different phras-
ings influence the pipeline’s performance at the ObjectNav task. This analysis
aims to understand the sensitivity of the VLFM approach to data uncertainty,
providing insights into optimizing prompt design and improving robustness in the
pipeline’s real-world deployment.

Our analysis reveals that modifying the prompt to “Seems like a target_object
is ahead” a seemingly minor adjustment that removed the word “there”, resulted
in a 0.6% increase in the success rate of object detection. Conversely, using only
the name of the object as the prompt resulted in a nearly 2% decrease in the
success rate. These findings indicate that downstream robotics tasks are sensi-
tive to the inherent uncertainty in VLMs’ contextual encoding, where variations
in prompt choice can significantly impact performance. This sensitivity reveals
a form of data uncertainty propagation, as changes in prompt formulation affect
how context is represented and utilized in decision-making processes.

Prompt SR ↑ SPL ↑ Soft SPL ↑ DTG ↓

Seems like there is a target_object ahead 52.6% 30.42 36.3 4.1301
A place where target_object can be found 51% 29.71 36.43 4.1085
A target_object can be in the vicinity 53.20% 31.20 36.82 4.2236
Seems like a target_object is ahead 53.20% 30.50 36.17 4.1391
A target_object is in the vicinity 51.65% 28.67 34.32 4.2399
target_object likely ahead 52.45% 29.86 35.84 4.1848
target_object 50.60% 28.28 34.76 4.1962

Table 5.4: Performance metrics for different prompts on the HM3D dataset.

5.2.2 Informative Frontier Exploration
We compare the performance of the VLFM approach with traditional frontier-
based exploration methods on the HM3D validation set in Table 5.5. Frontier-
based exploration typically guides the robot towards the boundaries between
explored and unexplored regions, aiming to maximize coverage of the environ-
ment. In our evaluation, we compare against three frontier exploration variants:
Greedy-FBE, which navigates to the closest frontier from the robot’s position;
Random-FBE, which selects a random frontier; and VLFM, which prioritizes
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Planner SR ↑ SPL ↑ Soft SPL ↑ DTG ↓

Closest-FBE 11.80 9.34 20.26 6.5845
Random-FBE 37.30 23.32 32.38 4.8057
VLFM 52.60 30.42 36.30 4.1301
I-FBE1 (Prompt Uncertainty) 51.95 27.07 32.41 4.2418
I-FBE1 (Prompt + Viewpoint Uncertainty) 52.25 28.96 34.66 4.2615
I-FBE2 (Prompt + Viewpoint Uncertainty) 52.60 26.81 32.23 4.2021

Table 5.5: Performance metrics of different frontier based exploration planners on the HM3D
validation set. We compare Closest-FBE, a frontier exploration baseline that navigates to the
closest frontier; Random-FBE, a frontier based exploration baseline that navigates to a random
frontier and VLFM, a frontier exploration baseline which navigates to the frontier with highest
cosine similarity; with our informative frontier-based exploration approaches.

the frontier with the highest cosine similarity score derived from a VLM. While
traditional frontier-based methods rely solely on spatial exploration, the VLFM
approach integrates semantic information to guide exploration towards regions
that are more likely to contain the target object and is the closest to our approach.

In our analysis we find that the Closest-FBE policy performs the worst due
to the fact that by going to the nearest frontier, the robot might get stuck in
exploring narrow close-by regions which can be located away from the target
object. The Random-FBE policy performs better because by choosing random
frontiers, it does not get stuck in narrow search space and can cover more area,
although still not being goal-directed. Then as a strong baseline, we compare
against the state-of-the-art ObjectNav baseline, VLFM. Next, we compare our
approach I-FBE1 with two different kinds of uncertainties. First, using only the
uncertainty derived from prompt ensembles and then using the combination of
prompt ensemble and viewpoint uncertainties. We observe that I-FBE1 using
both prompt and viewpoint uncertainty performs better in all metrics compared
to using only prompt uncertainty. Finally we compare with the IFBE-2 policy,
which has a success rate equal as the state-of-the-art baseline but has a lower
SPL than IFBE or VLFM. This is due to the fact that it explores much more.
By comparing these strategies, we aim to evaluate the benefits of incorporat-
ing semantic guidance through VLMs versus relying purely on spatial coverage.
This comparison provides insights into how effectively each approach can navi-
gate cluttered and dynamic environments, with a focus on finding objects more
efficiently and improving the overall performance of the robot’s exploration and
navigation tasks.
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Action Space SR ↑ SPL ↑ Soft SPL ↑ DTG ↓

Low Level Action Space 14.00 7.88 13.41 8.04
Radius Based Sampling 28.50 12.38 15.26 5.9178
Farthest Point Sampling (FPS) 36.50 15.25 18.81 5.3044
I-MCTS (FPS + Expected Improvement Reward) 36.90 15.08 18.45 5.2630

Table 5.6: Performance of MCTS with different action spaces on the HM3D dataset.

5.2.3 Action Space design of MCTS
In the ablation study on MCTS action spaces, we compare the performance of
three strategies: low-level action space, radius-based sampling, and Farthest Point
Sampling (FPS), keeping the MCTS parameters unchanged. The results show
that the low-level action space performs the worst, struggling with navigation
due to its restricted action choices, which often lead to the robot getting stuck.
Radius-based sampling provides better performance by offering improved navi-
gation efficiency, but its limited action range reduces its effectiveness in more
complex scenarios. In addition, the computational cost of sampling from the
entire map, makes this approach intractable for real time planning. FPS de-
livers a substantial performance boost by effectively balancing exploration and
computational demands through the selection of equidistant points across the
map. When integrated with the expected improvement reward function in I-
MCTS, FPS shows a slight additional improvement, highlighting the value of
uncertainty-informed planning for goal-oriented exploration, though there is a
minor trade-off in path optimality due to a stronger focus on exploration.

Overall, the ablation study highlights that FPS provides the best trade-off
between computational efficiency and navigation performance, outperforming the
low-level and radius-based action spaces in terms of success rate and DTG.

5.2.4 Benchmarking ObjectNav Approaches
In the final experiment, as shown in Table 5.7, we compare our proposed meth-
ods with several state-of-the-art approaches for the ObjectNav task across both
of our benchmark datasets. Our methods, which include I-MCTS and two vari-
ations of uncertainty-informed frontier-based exploration (I-FBE1 and I-FBE2),
are assessed in terms of their ability to effectively navigate towards a target on
the metrics of SR and SPL, which are consistent with the metrics reported by
other methods. Notably, SoftSPL and DTG are not included, as they are less
commonly reported in existing works and do not directly indicate task success.

The results of this experiment demonstrate that our methods perform com-
petitively with the state-of-the-art approach VLFM. Although I-MCTS does not
achieve state-of-the-art performance, it outperforms several earlier frontier-based
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Approach Year HM3D MP3D

SR↑ SPL↑ SR↑ SPL↑

ZSON [72] 2023 25.5 12.6 15.3 4.8
CoW [30] 2023 - - 7.4 3.7
ESC [132] 2023 39.2 22.3 28.7 14.2
VLFM [128] 2024 52.6 30.4 36.4 17.5
Ours (I-MCTS) 2024 36.90 15.08 26.92 11.40
Ours (I-FBE1) 2024 52.25 28.96 35.26 16.47
Ours (I-FBE2) 2024 52.60 26.81 35.81 16.63

Table 5.7: Comparison of state-of-the-art for ObjectNav on HM3D and MP3D datasets.

methods, suggesting that employing a distinct planning strategy such as MCTS
shows promise for the ObjectNav task. The uncertainty-informed frontier explo-
ration strategies, I-FBE1 and I-FBE2, deliver results that are closely aligned with
VLFM, demonstrating similar levels of navigation effectiveness across datasets.
These approaches effectively utilize uncertainty information to guide exploration,
yielding outcomes that rival the performance of VLFM, which does not incor-
porate uncertainty into its planning framework. Our experiments highlight that
the inclusion of uncertainty-informed strategies allows our methods to achieve
state-of-the-art performance. While there are slight differences in navigation ef-
ficiency across our different approaches, they consistently demonstrate the value
of leveraging uncertainty for informed exploration, confirming the effectiveness of
our techniques in comparison with other advanced navigation algorithms.

5.2.5 Analysis of Failure Modes
To systematically assess the limitations of our approach, we categorize and quan-
tify specific failure modes that impact our success on the ObjectNav task. We
analyze the failure modes of our approaches, I-FBE2 and I-MCTS, and compare
them with the failure modes of VLFM on the HM3D dataset. This analysis is
visually summarized in Figure 5.4. We quantify failure modes into three primary
categories: detection failures, exploration failures, and navigation failures.

Detection failures consist of two main types: false positives, where the object
detection module mistakenly identifies a non-target object as the target, often due
to dataset constraints that mark only specific instances of an object as valid; and
false negatives, where the object detection module fails to detect the target even
when it was observed. These errors can lead to premature episode termination
if the robot either misidentifies or misses the target. Exploration failures arise
from the robot’s challenges in navigating complex, multi-floor environments and
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include several types. Wrong floor navigation occurs when the robot mistakenly
moves to a different floor than the one with the target object, due to limited
vertical spatial awareness. Unattempted floor change happens when the target
object is initialized on a different floor than the robot, but the robot fails to
initiate a floor change, restricting its search to an incorrect floor. Unnecessary
floor change involves the robot moving to another floor despite starting on the
one where the target object was located, leading to inefficient exploration and
reduced time on the correct floor. Finally, insufficient exploration occurs when
both the robot and target are on the same floor, but the robot does not search
thoroughly enough within the allotted time to locate the target. Navigation
failures occur when the robot’s navigation policy fails to guide it to the target
object after detection. This can happen if the robot is unable to approach the
target closely enough to meet the distance criterion, which we characterize as
a bad stop. Another reason for a navigation failure is an episode timeout where
the robot fails to reach the target before the episode ends, often due to late
discovery of the target object or an inefficient navigation path.

VLFM’s performance on the HM3D dataset shows a failure rate of approxi-
mately 47.4% across 2000 episodes. Detection failures account for about 50% of
total failures and exploration failures make up 46.9% of total failures. Navigation
failures are far less common, accounting for only 2.2% of total failures.

Our myopic exploration approach, I-FBE2 rivals VLFM on success rate and
similarly has a 47.4% failure rate on HM3D. In this approach, Detection failures
account for approximately 51.6% of total failures, primarily due to false positives.
Another significant source of failure stems from exploration issues account for
46.9% of total failures, due to navigation to wrong floors by failing to travel
stairs and attempt necessary floor changes, or by accidentally traveling stairs and
performing unnecessary floor transitions. Navigation failures are minimal for our
approach as compared to other failure types and comparable to VLFM, as both
methods use DD-PPO [118] for low level navigation.

In contrast to myopic methods, our non-myopic policy I-MCTS demonstrates
a 63.1% failure rate. Of these failures, 41.9% stem from false positives, while
57.4% result from exploration challenges, with insufficient exploration being the
primary contributor. We attribute this limitation in exploration to the MCTS
planner’s lack of an explicit mechanism to expand observed space actively, as
occurs in frontier-based approaches. This becomes particularly problematic in
environments with narrow corridors, where the planner’s inability to systemati-
cally explore constrained areas reduces search effectiveness. In I-MCTS, actions
are sampled as equidistant points across the map, but without explicitly target-
ing frontiers, even though the reward function assigns value to proximity to these
unexplored areas. This design leaves the exploration dependent on chance sam-
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Figure 5.3: Qualitative analysis of I-MCTS performance in narrow corridor environments, high-
lighting common exploration failures due to limited map coverage. The examples illustrate
instances where insufficient frontier exploration leads the robot to revisit previously observed
areas, restricting successful target detection and navigation.

pling near frontiers, which is inconsistent since frontiers lie at the periphery of
the map, where fewer actions are typically sampled. As a result, the observed
map does not expand sufficiently, preventing full coverage of the environment.
Consequently, most actions target open spaces rather than unexplored regions,
resulting in a map that fails to expand sufficiently to cover the entire environ-
ment. This limitation causes the robot to repeatedly sample within known areas,
revisiting the same locations despite penalization. Figure 5.3 illustrates several
narrow corridor scenarios where this limitation is particularly evident.

Our failure mode analysis reveals that the two primary factors contributing to
poor success rates in state-of-the-art ObjectNav approaches are detection-related
and exploration-related failures. In Section 6.2, we discuss potential improve-
ments to address these issues, focusing on enhancing detection accuracy and op-
timizing exploration strategies to improve performance in ObjectNav.
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Figure 5.4: Failure mode comparison on the HM3D dataset: highlighting the performance
differences between the state-of-the-art VLFM [128] approach (top) and our proposed methods,
I-FBE2 (middle) and I-MCTS (bottom).
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Conclusion

In this thesis, we developed a novel training-free, open vocabulary semantic
uncertainty-informed active perception pipeline for the ObjectNav prob-
lem. We implemented and evaluated our approach on different datasets
to show the generalizability of our approach to different scenarios and ob-

jects. We then provided comparisons to other existing techniques. We provided a
thorough experimental evaluation supporting all claims made in this thesis. Our
results indicate that uncertainty informed active perception is a useful direction
for semantic exploration in the ObjectNav task.

6.1 Short summary of key contributions

In conclusion, the key contributions of this ObjectNav pipeline proposed in this
thesis are as follows:

• We used VLMs to semantically guide exploration towards semantically sim-
ilar regions and detect objects.

• We demonstrated that VLMs are susceptible to data uncertainty when ap-
plied to downstream robotics tasks and proposed a method to quantify it.

• We developed a probabilistic map formulation to create an uncertainty-
infused semantic map representation using VLM uncertainties.

• We developed information-theoretic rewards for myopic and non-myopic
planners using our probabilistic map to make uncertainty-informed deci-
sions.
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6.2 Future Work
In this section, we discuss potential avenues for future work aimed to address the
limitations identified in our approach. As outlined in Section 5.2.5, our quan-
titative analysis of failure modes, both for our method and the VLFM base-
line, highlights two primary categories of issues: detection-related failures and
exploration-related failures. Addressing these shortcomings will be essential for
improving the overall performance and robustness of our approach.

Exploration-related failures make up a significant portion of the issues, es-
pecially when navigating stairs. The system often fails by not traveling stairs
when needed or doing so unnecessarily. Additionally, insufficient exploration
leads to poor coverage of the environment. To address these problems, future
work should incorporate a hierarchical map representation, such as scene graphs,
to retain spatial information across different levels. Currently, our approach re-
sets the map after traveling stairs, causing a loss of previously explored areas.
Hierarchical or graph-based maps could provide a more structured and efficient
alternative to occupancy grids, improving tree-based planners like MCTS. This
would allow planners to make better decisions about exploring different levels,
such as when to travel stairs, and enable more sophisticated reward functions for
efficient exploration and decision-making.

Detection-related failures, such as false positives and false negatives, pose sig-
nificant challenges in our approach, worsened by the large scale of evaluation
(about one million detection runs across 2000 episodes in the HM3D dataset).
False negatives mainly arise from limitations within the perception system, lead-
ing to missed detections. In contrast, false positives are due to a combination of
factors, inherent shortcomings in the perception system and ambiguities in the
dataset. Specifically, the dataset may include multiple instances of the same ob-
ject category, with only some considered valid for the task, causing the system to
mistakenly end an episode when an incorrect instance is detected. Our current ap-
proach does not effectively separate perception limitations from dataset-related
issues. Future work should prioritize developing advanced perception methods
to address these complexities and improving datasets to minimize ambiguities,
thereby enhancing detection accuracy and robustness.

Improving uncertainty quantification presents another significant opportunity
for advancement. Currently, we address language uncertainty by randomly select-
ing five prompts in our ensemble, but adopting more diverse ensemble strategies
or optimizing prompt selection could improve performance. Some techniques,
such as CoOp [136] and CoCoOp [135], learn prompts, but these methods are tai-
lored for tasks involving ImageNet-like classes, where objects are clearly present
in images. There are currently no techniques that effectively associate objects
with images where they are not visibly present, revealing a gap in perception

62



CHAPTER 6. CONCLUSION

Image Augmentation SR ↑ SPL ↑ Soft SPL ↑ DTG ↓

Original RGB Image 52.6% 30.42 36.3 4.1301
Horizontal Flip 51.90% 30.49 37.35 4.0336
Center Crop 50.30% 30.03 37.22 4.0715
Saturation(15%) 50.55% 30.14 36.94 4.1819

Table 6.1: Performance metrics for various image augmentations on the HM3D dataset, high-
lighting the impact of each augmentation on ObjectNav performance

Method SR ↑ SPL ↑ Soft SPL ↑ DTG ↓

VLFM 52.6% 30.42 36.3 4.1301
VLFM + Object2Room 54.15% 32.63 38.87 3.9602

Table 6.2: Using the predicted room location instead of the object name improves all perfor-
mance metrics.

that requires further exploration. Addressing other sources of data uncertainty,
such as those introduced by image augmentations, is also essential. Our prelimi-
nary results show that applying augmentations before processing images through
VLMs affects downstream tasks and performance, indicating the need to account
for these factors in future uncertainty modeling efforts, as shown in Table 6.1. In-
corporating such elements into a more comprehensive uncertainty quantification
framework could lead to a more principled approach for active perception.

Beyond the current approach of directly associating objects with images, other
relationships could be utilized, such as predicting the most likely room where an
object might be found. This can be achieved by incorporating an LLM into the
process to infer contextual relationships between objects and their typical loca-
tions. Our preliminary experiments using this approach showed promising results:
mapping six objects from the HM3D dataset to their most likely rooms based on
empirical observations led to a 1.5% improvement in success rate and a 2% im-
provement in SPL, as shown in Table 6.2 The mappings used were: “chair” to
“living room,” “bed” to “bedroom,” “potted plant” to “living room/office,” “toi-
let” to “toilet/bathroom,” “tv” to “living room,” and “couch” to “living room.”
These results suggest that incorporating spatial context into object navigation
could enhance performance.

We believe that enhancing exploration strategies with flexible map represen-
tations, improving perception systems and datasets to reduce ambiguities, and
quantifying other kinds of data uncertainties is needed to increase the robustness
and efficiency of our approach and useful for the ObjectNav task.
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6.3 Open source contributions
We plan to offer an open-source repository of our proposed ObjectNav pipeline,
implemented in Python to ensure ease of use. A link to the repository is provided
to support its evaluation and adoption by the robotics community.

• https://gitlab.ipb.uni-bonn.de/utkarsh.bajpai/masterthesis
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Active Perception and Mapping for Open Vocabulary 
Object Goal Navigation
Utkarsh Bajpai, Julius Rückin, Marija Popović and Cyrill Stachniss

Approach

Experiments and Results

Abstract
■ Household robots need reliable object-finding capability
■ VLMs enable semantic exploration with some uncertainty.
■ We quantify VLM uncertainty using contextually similar text 

prompts & build probabilistic metric-semantic map
■ Map guides planning with frontier-based and tree search 

methods.

▪ We develop an uncertainty-informed semantic active 
perception pipeline for object goal navigation

▪ We develop a probabilistic map formulation to create an 
uncertainty-infused semantic map representation using 
VLM uncertainties.

▪ We develop information-theoretic rewards for myopic and 
non-myopic planners

I-FBE2 (HM3D)I-MCTS (HM3D)

Approach Year
HM3D MP3D

SR SPL SR SPL
ZSON 2023 25.5 12.6 15.3 4.8
CoW 2023 - - 7.4 3.7
ESC 2023 39.2 22.3 28.7 14.2

VLFM 2024 52.6 30.4 36.4 17.5
Ours (I-MCTS) 2024 36.9 16.08 26.9 11.4
Ours (I-FBE1) 2024 52.2 28.9 35.2 16.4
Ours (I-FBE2) 2024 52.6 26.8 35.81 16.63

Vision 
Language 
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