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ABSTRACT
This paper addresses the reference tracking problem of a quadrotor
in presence of physical constraints using Laguerre functions-based
Model Predictive Control (MPC). MPC necessitates in finding an
optimal solution, even under system constraints. The use of La-
guerre functions helps in reducing computation time, for the online
implementation of the controller. The dynamic equations of the
quadrotor are derived using the Newton-Euler method. A quadratic
cost function is derived for the Laguerre-based MPC and Hildreth’s
quadratic programming method is applied for the optimization of
the quadratic cost in presence of constraints. The quadrotor model
with constraints is simulated in MATLAB and results are presented
for circular and helical 3D reference trajectories.
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1 INTRODUCTION
Quadrotors are Unmanned Aerial Vehicle (UAV) that use four rotors
for generating thrust and maneuvering in 3D space. Quadrotors
have gained a lot of popularity among researchers and industries,
due to their ease of design and robustness. They are utilized in
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various applications such as surveying, search and rescue, mapping,
inspection, mining, construction, agriculture, public safety, and sci-
entific research. Operation in such demanding applications requires
successful tracking of complex trajectories while operating under
the physical constraints of the system. Moreover, the quadrotor is
an underactuated system making it an important control problem
for efficient trajectory tracking under constraints.

Various control designs have been proposed for the efficient
design of a quadrotor’s control, such as PID and LQ control in [1],
[2]. The PID-based control techniques require extensive gain tun-
ning and is inherently a single-input single-output (SISO) control
technique, but the quadrotor is a multi-input multi-output (MIMO)
system. In [3], backstepping control was presented to stabilize and
track reference trajectories for the quadrotor and in [4] Feedback
Linearization and Adaptive Sliding Mode Control was analyzed
for quadrotor control. However, physical constraints were not con-
sidered in either of the controller design. In [5], a MPC and a H∞
controller was deployed for trajectory tracking and to stabilize the
attitude respectively. However, as mentioned above, physical con-
straints were not considered. In [6] a hierarchical control method-
ology that breaks into multi-level control strategy, and uses MPC
for reference tracking, but uses unconstrained inputs and states
to have a real-time solution. In [7], the author proposed a hierar-
chical control scheme in which an integral MPC was used for the
translational motions tracking and a MPC based scheme was used
for attitude tracking. It takes into consideration the physical con-
straints of the rotorcraft i.e., constraints on the inputs. However, the
control design uses two different controllers, one for translational
motions and one for attitude tracking which makes the control
design complex. Other control techniques like, [8], [9], [10] deploy
adaptive neural network-based control schemes for the control of
a quadrotor.

The advantage of MPC over other control techniques is the abil-
ity to solve for an optimal solution for reference tracking while
taking constraints into the consideration. However, MPC is com-
putationally expensive and requires high processing power for
real-time implementation. In [11], wang showed that the number of
terms in optimization can be reduced by using Laguerre functions-
based Model Predictive Control as compared to the traditional
MPC approach, thus reducing the computation time. In our work,
a centralized, Linear Model Predictive Control based on Laguerre
functions is deployed to control both the position and attitude of
the quadrotor. Constraints are considered on both control inputs
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Figure 1: Inertial and body frames of a quadrotor [14]

and rate of control input change simultaneously. Moreover, to solve
for the optimal solution in presence of constraints as given in [12]
“Hildreth’s Quadratic programming procedure”, [13] was used for
the quadratic programming problem. The proposed design was
simulated in MATLAB to follow circular and helical reference tra-
jectories. RMSE (RootMean Square Error) andMAE (MeanAbsolute
Error). with respect to reference trajectory and actual trajectory
were calculated and the results are provided in this paper for each.

2 DYNAMICAL MODEL OF A QUADROTOR
A body frame B and an inertial frame I are introduced to define
the attitude. Let the position and attitude vector of the quadrotor
with respect to the inertial frame(I ) of the quadrotor be ξ and ζ ,
respectively, where ξ and ζ are defined as:

ξ ≡ [ x y z ]T and ζ ≡ [ ϕ θ ψ ]T ,
and ϕ, θ ,ψ denote the roll, pitch, and yaw angles respectively. The
body frame’s origin lies at the center of mass of the quadrotor.
Defining linear and angular velocities with respect to body frame
(B) of the quadrotor as

VB ≡ [ vx vy vz ]T and Ω ≡ [ p q r ]T .
the following equations describe the relationship between ξ , ζ , VB
and Ω ,

Ûξ = RVB, Ûζ = JΩ (1)
where

R =

CθCψ CψSθSϕ − SψCϕ CψSθCϕ + SψSϕ
CθSψ SψSθSϕ +CψCϕ SψSθCϕ −CψSϕ
−Sθ CθSψ CθCϕ


(2)

and

J =

1 0 −Sθ
0 Cϕ SϕCθ
0 −Sϕ CϕCθ


(3)

The rotational matrix from the body frame of reference to the
inertial reference frame is given by R. Similarly, J is the angular
velocity transformation matrix from the body frame to the inertial
frame. In (2) and (3), Sx ≡ Sin(x), Cx ≡ Cos(x). From small angle
assumption around the hovering point, Cos(x) ≈ 1 and Sin(x) ≈ 0.
Thus, Ûϕ ≈ p, Ûθ ≈ q, Ûψ ≈ r .

From aerodynamics [15], the lift force and moment are propor-
tional to the square of the rotation speed of the propeller. They are
represented below:

Fi = kf ω
2
i and τi = kmω2

i , i = 1, 2, 3, 4. (4)
where, kf and km are the aerodynamical force and moment con-
stants and ωi is the rotational speed of the propeller. Thus, the

total torque and thrust generated by the quadrotor are given by the
following equations:




T = kf
�
ω2
1 + ω2

2 + ω2
3 + ω2

4
�

τϕ = lkf
�(ω2

2 + ω2
3

�
− (ω2

1 + ω2
4)]

τθ = lkf
�(ω2

1 + ω2
2
� − (ω2

3 + ω2
4)]

τψ = km
�(ω2

1 + ω2
3

�
− (ω2

2 + ω2
4)]

(5)

In (5), l denotes the length of the quadrotor arm. From the
Newton-Euler equations of motion and considering small angle
approximation, the rotational motion can be described using the
following equations given in (6)-(9),

I Üζ + Ûζ × I Ûζ =

τϕ
τθ
τψ


(6)

I =


Ixx 0 0
0 Iyy 0
0 0 Izz


(7)

Due to the symmetric structure of a quadrotor, the Inertia matrix
I is diagonal. From the substitution of (7) in (6), we get,


Ûp
Ûq
Ûr


=


(Iyy − Izz )qr/Ixx
(Izz − Ixx )pr/Iyy
(Ixx − Iyy )pq/Izz


+



τϕ
Ixxτθ
Iyy
τψ
Izz


(8)

8) can be linearized around the hovering point i.e. Ûϕ ≈ 0, Ûθ ≈
0, Ûψ ≈ 0 to yield,


Ûp
Ûq
Ûr


=



τϕ
Ixxτθ
Iyy
τψ
Izz


(9)

The translational equations of motion can be derived by applying
Newton’s Second law as:

m Üξ =

0
0
mд


+ R


0
0
−T


(10)

where R is the rotation matrix given in (2). Similarly, (10) can be
linearized around hovering point to get,


Üx
Üy
Üz


=


0
0
д


+


−дθ
дϕ

− T
m


(11)

For the linearized state-space model, the internal state vector,
control vector, and output vector are given by,

XT ≡ �
x y z Ûx Ûy Ûz ϕ θ ψ Ûϕ Ûθ Ûψ �T (12)

UT ≡ �
u1 u2 u3 u4

�T (13)
In (13), [u1] = [T-mg] and [ u2 u3 u4 ]T =

[ τϕ τθ τψ ]T , and the output vector is as follows,

YT ≡ �
x y z ψ

�T (14)

Linearized State-space form is then expressed as
ÛX = AX + BU (15)

Y = CX (16)



Constrained Control ofQuadrotor Using Laguerre Functions Based Model Predictive Control for Reference Tracking AIR2021, June 30–July 04, 2021, Kanpur, India

Figure 2: Control diagram for Linearized MPC (x∗,y∗,z∗,ψ∗: reference signals)

Using 1), (2), (9), (11) to (16), the values of A, B & C can be
evaluated.

3 MODEL PREDICTIVE CONTROL USING
LAGUERRE FUNCTIONS

An MPC can handle hard constraints in control design. An optimal
solution is calculated at each sampling instant in the presence
of constraints. Using Laguerre functions to parameterize control
signal [12], one can provide two explicit tuning parameters, namely,
Laguerre pole (a) and no. of terms (N ), for achieving the desired
closed loop performance and providing the flexibility to choose
future constraints locations. Moreover, the number of terms for
optimization are reduced. Furthermore, the smoothness of Laguerre
polynomials avoids steep changes in the control signal.

3.1 Derivation of Laguerre based MPC
Assuming the plant has m inputs, q outputs, and n states, the dis-
cretized state-space form of the plant to be controlled can be repre-
sented as

xm (k + 1) = Amxm (k) + Bmu (k)
y (k) = Cmxm (k) (17)

Where xm (k) denotes the state vector, u(k) denotes the control
input vector, and y(k) is the output vector. Defining ∆xm (k + 1) =
xm (k + 1) − xm (k) and ∆u(k) = u(k) − u(k − 1), the augmented
state-space form of the plant (17) can be given as�

∆xm (k + 1)
y (k + 1)

�
=

�
Am OTm

CmAm Iq×q

� �
∆xm (k)
y (k)

�
+

�
Bm

CmBm

�
∆u (k)

y (k) = �
Om Iq×q

� �∆xm (k)
y (k)

�
(18)

In which Iq×q is the identity matrix having a dimension of q × q,
Om is a q × n zero matrix. By selecting a new state vector

x(k) = [ ∆xm (k)T y(k)T ]T and defining A = [ Am OT
m

CmAm Iq×q
],

B = [ Bm
CmBm

] and C = [ Om Iq×q ], (18) can be written as

x (k + 1) = Ax (k) + B∆u (k)
y (k) = Cx (k) (19)

Let at sampling instant k , ∆U ≡
[∆u(k),∆u(k + 1), . . . ,∆u(k + Nc − 1)]T denote the control
trajectory. Laguerre functions are a set of orthonormal functions
and they can be used to approximate the incremental terms in ∆U .
The z-transform of the discrete-time Laguerre functions is then
given by

Γk (z) = Γk−1 (z)
�
z−1 − a

1 − az−1

�
(20)

Γk (z) =
√
1 − a2

1 − az−1
(21)

Let li (k) denote the inverse z-transfrom of Γi (z,a), then the vector
form for such discrete-time Laguerre functions is given by

L (k) = [l1 (k) l2 (k) l3 (k) . . . lN (k)]T (22)
Using (20), a difference equation can be derived that is satisfied by
Laguerre functions given by,

L (k + 1) = AlL (k) (23)
where Al is (N × N ) and is defined using parameters a and β =
(1 − a2), where a denotes the Laguerre pole and 0 ≤ a < 1 for the
Laguerre network to be stable. The initial condition is given by

L(0)T =
p
β
h
1 − a a2 − a3 . . . (−1)N−1(a)N−1

iT
(24)

For N = 5,

Al =



a 0 0 0 0
β a 0 0 0

−aβ β a 0 0
a2β −aβ β a 0
−a3β a2β −aβ β a


;L (0) =

p
β



1
−a
a2

−a3
a4


At instant k , the control trajectory, i.e.,
∆u(k),∆u(k + 1), . . . ,∆u(k + Nc − 1) is referred as a stable
dynamic system’s impulse response. The set of Laguerre functions
li (k) are used to define the control trajectory as (at instant ki ):

∆u (ki + k) = L(k)T η (25)
In (25), the parameter η = [c1 c2 . . . cN ] and c j , j = 1, 2, . . . ,N are
the coefficients and are functions of the initial time ofki , whereas,N
denotes the no. of expansion terms. For a Multi-Input, Multi-Output
(MIMO) system,

∆u (ki +m) =



L1(m)T 0T2 . . . 0Tm
0T1 L2(m)T . . . 0Tm
...

...
. . .

...

0T1 0T2 . . . Lm (m)T


η, (26)

where m = 0, 1, 2, 3 . . ., and the input matrix is denoted by B =
[ B1 B2 · · · Bm ]. The term ∆u(ki +m) denotes the change
of control at sampling instant m, and Li (m)T denotes the discrete-
time Laguerre function vector for the ith control, and 0m is a zero
vector. The objective is to find the vector η to minimize the cost
function:

J =

NpÕ
m=1

x(ki +m | ki )TQx(ki +m | ki ) + ηT RLη (27)

Note, the weighting matrices are Q ≥ 0 and RL > 0, where RL has
the same dimension as η, Q has dimension equal to state variables.
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Also Q = CTC for this formulation and RL = ru IN×N , whereas ru
is a scaler and IN×N is the identity matrix of dimension N , and Np
is the prediction horizon. The term x(ki +m | ki ) is given next as

x(ki +m | ki ) = Amx (ki ) +
m−1Õ
j=0

Am−j−1B∆u (ki + j)

= Amx (ki ) +
m−1Õ
j=0

Am−j−1BL(j)T η

= Amx (ki )+
m−1Õ
j=0

Am−j−1
h
B1L1(j)T B2L2(j)T · · · Bm Lm (j)T

i
η

= Amx (ki ) + ϕ(m)T η (28)
where ηT = [ ηT1 ηT2 . . . ηTm ] and ϕ(m)T is given by

ϕ(m)T =
m−1Õ
j=0

Am−j−1
h
B1L1(j)T B2L2(j)T · · · Bm Lm (j)T

i
(29)

From (27) and (28), the cost function becomes:

J = ηTΩη + 2ηTΨx (ki ) +
NpÕ
m=1

x(ki )T
�
AT

�m
QAmx (ki ) (30)

In which Ω and Ψ are:

Ω =
NpÕ
m=1

ϕ (m)Qϕ(m)T + RL (31)

ψ =

NpÕ
m=1

ϕ (m)QAm (32)

3.2 Constrained Control using Laguerre based
MPC

The optimization of Laguerre-based MPC subject to constraints
is a quadratic programming problem. Although MPC can handle
constraints of many kinds, constraints on control input and rate
of change in control input are considered in this formulation. For
a standard Quadratic programming problem, if x is the decision
variable, then J is given by,

J =
1
2x

T Ex + xT F (33)

Mx ≤ γ (34)
In which E, F ,M and γ are vectors and matrices in quadratic

programming. The objective function (33) needs to be optimized
subject to the constraints in (34). E is assumed to be a symmetric
and positive definite matrix. A simple algorithm was introduced,
which is called Hildreth’s quadratic programming procedure [13],
this does not involve any matrix inversion as it is an element-
by-element search technique. Hildreth’s quadratic programming
method is as follows:

λm+1i = max
�
0,wm+1

i

�
, (35)

where

wm+1
i = − 1

hii


ki +

i−1Õ
j=1

hi jλ
m+1
j +

nÕ
j=i+1

hi jλ
m
j


, (36)

In (36), the scaler hi j is the ijth matrix element ofH = ME−1MT ,
ki is the ith element in the vectorK = γ +ME−1F ,m is the iteration
number and λ is the vector of Lagrange multipliers. The converged
solution of Lagrange multipliers after a complete iteration is given
by λ∗. It is a vector that only has values which are zero or positive.
The optimized solution of x in the presence of constraints is given
by

x = −E−1
�
F +MT λ∗

�
(37)

For this formulation, the quadratic cost function to be minimized
becomes,

J = ηTΩη + 2ηTΨx (ki ) , (38)

Note in (38), η is the decision variable, and Ω and Ψ are given
by (31) and (32) respectively. The following inequality ensure the
constraints on the rate of change of control input:

∆umin ≤ ∆u (ki +m) ≤ ∆umax

where ∆umin and ∆umax are the lower and upper limits of the rate
of change in control input. From (26), one can re-write (38) as (39),
while constraints on control input are given by (40):

∆umin ≤



L1(m)T 0T2 . . . 0Tm
0T1 L2(m)T . . . 0Tm
...

...
. . .

...

0T1 0T2 . . . Lm (m)T


η ≤ ∆umax (39)

umin ≤



k−1Í
i=0

L1(i)T 0T2 . . . 0Tm

0T1
k−1Í
i=0

L2(i)T . . . 0Tm
...

...
. . .

...

0T1 0T2 . . .
k−1Í
i=0

Lm (i)T



η+u (ki − 1) ≤ umax ,

(40)
In (40), u(ki − 1) is the previous control input and umax and umin

are the upper and lower limits of control input respectively. From
comparing (33), (34) to (38), (39), and (40), E, F ,M, and γ can be
evaluated.

4 SIMULATION AND RESULTS
To verify the ability and effectiveness of the proposed controller,
simulation of the quadcopter was performed in which it was made
to follow two different 3D reference trajectories in the presence
of constraints on control input and the change in rate of control
input. For both the trajectories, the performance metrics chosen
to establish the accuracy of the controller were RMSE and MAE.
Parameters of the quadrotor are taken as in [15], and are presented
in Table 1

4.1 Constraints Evaluation and Controller
Parameters

For the given quadrotor model, the maximum angular speed of
the motor ωmax was taken as 4720 rpm [15]. For constraints to be
evaluated the rpm of the motors at the hovering point needs to be
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Table 1: Parameters for simulation [15]

Parameter Value
Mass,m 1.587kд
Gravity, д 9.81ms2
Length of arm,l 0.243m
Thrust constant, kf 4.0687×10−7N/rpm2

Drag constant, km 8.4367×10−9Nm/rpm2

MOI about x-axis, Ixx 0.0213kдm2

MOI about y-axis, Iyy 0.02217kдm2

MOI about z-axis, Izz 0.0282kдm2

determined first along with the maximum thrust produced by the
quadrotor. At hovering position,

weiдht = Total thrust (41)

weiдht =mд = 15.568N (42)

Total thrust = kf

4Õ
i=1

ω2
i (43)

From (41), (42), and (43) speed of each rotor at the hovering point
comes out to be approximately 3093 rpm. The maximum thrust
produced by the quadrotor Tmax is given by,

Tmax = 4kf ω2
max (44)

The value ofTmax was calculated as 36.257N . From values of angu-
lar speed mentioned above, parameters of Table 1 and the equations
given in (5) the maximum and minimum values of control input
torques are obtained as:




−1.257 ≤ τϕ ≤ 1.257
−1.257 ≤ τθ ≤ 1.257

−0.2145 ≤ τψ ≤ 0.2145
(45)

As [ u2 u3 u4 ]T = [ τϕ τθ τψ ]T and [u1] = [T-mg], thus
constraints on u1 are given by,

−mд ≤ u1 ≤ Tmax −mд

− 15.568 ≤ u1 ≤ 20.689 (46)
For the rate of change in control input the value is set to 60% of the
input value, and They are given as:




−9.3408 ≤ ∆u1 ≤ 12.413
−0.7542 ≤ ∆u2 ≤ 0.7542
−0.7542 ≤ ∆u3 ≤ 0.7542
−0.7542 ≤ ∆u4 ≤ 0.7542

(47)

For the control design Q = CTC and RL = ru IN×N , ru = 0.1. The
other parameters of the controller were tuned via trial and error
performed over various simulations. They are given in Table 2

Figure 3: Tracking of the reference signal (red and dashed)
by quadrotor (solid blue) in 3D space.

4.2 Trajectory Tracking and Results
Two trajectories are considered for testing, helical and circular.
Following are the reference signals generated for each of the trajec-
tories:

Circular : x∗ = 0.5 cos (0.0630t) ,
y∗ = 0.5 sin (0.0630t) , z∗ = 1, ψ ∗ = 0 (48)

Helical : x∗ = 0.5 cos (0.0630t) ,
y∗ = 0.5 sin (0.0630t) , z∗ = 0.0201t , ψ ∗ = 0 (49)

The starting position of the quadrotor in (x ,y, z) is set to be
(0, 0, 0) for both the trajectories. The helical trajectory starts from
(x∗,y∗, z∗)=(0.5, 0, 0). For the helical trajectory, figures (3) to (5)
show the simulation of reference tracking for the quadrotor in
presence of constraints. It can be seen from Figures (4) and (5)
that the control signals and their rate of change do not violate any
constraints and Figure (3) shows reference tracking for helical tra-
jectory in 3D space. As it can be seen in Table 3 the maximumMAE
received is in the z-axis equal to 1.159 × 10−1 m in case of helical
trajectory. For the entire trajectory, the percentage of error comes
out to be only 1.4% in the z-axis. It was observed that the attitude
values of the UAV adhered to the small angle approximation con-
sidered during the control design. Thus, the controller performs
reference tracking with a maximum error of less than 1.5% in each
axis, which is satisfactory and tolerable.

5 CONCLUSION
A centralized MPC based on Laguerre functions was presented in
this paper. The use of Laguerre functions reduces constraints in
the prediction horizon hence, making it suitable for online imple-
mentation. Laguerre-based MPC can handle systems where rapid

Table 2: Controller parameters for Laguerre based MPC

Parameter Sampling
time (∆t )

Laguerre
pole(a)

No. of
terms (N )

Prediction
Horizon (Np )

Control
Horizon (Nc )

Value 0.1s 0.5 10 100 10
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Table 3: MAE and RMSE for circular and helical trajectories.

Performance Metric Trajectory Mean axis
Error in x (m) Error in y(m) Error in z(m)

MAE Circle 3.4 × 10−3 6.6 × 10−3 5.9 × 10−4
Helix 3.4 × 10−3 6.6 × 10−3 1.159 × 10−1

RMSE Circle 1.456 × 10−1 1.418 × 10−1 1 × 10−2
Helix 1.456 × 10−1 1.418 × 10−1 1.6 × 10−1

Figure 4: Torque and their respective rate of change for Helical reference trajectory.

Figure 5: Thrust and rate of change of thrust for Helical reference trajectory.

sampling is involved andmore complicated process dynamics are re-
quired [16]. A quadratic cost function was derived for the Laguerre-
based MPC, and Hildreth’s quadratic programming technique was
applied for the optimization of the quadratic cost in presence of con-
straints. Constraints were calculated and the quadrotor model was
simulated for tracking circular and 3D helical reference trajectories.
The controller was able to follow the reference trajectories with a

maximum error of less than 1.5% in each axis, which shows satisfac-
tory performance while operating under the physical constraints
of the system.
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